Suppr超能文献

利用大数据学习增强图像的无参考质量评估模型。

Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Apr;29(4):1301-1313. doi: 10.1109/TNNLS.2017.2649101. Epub 2017 Mar 6.

Abstract

In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

摘要

在本文中,我们研究了通过机器学习进行图像质量评估(IQA)和增强的问题。这个问题在计算智能和图像处理社区中一直受到广泛关注,因为对于许多实际应用,例如目标检测和识别,通常需要适当增强原始图像以提高视觉质量(例如可见度和对比度)。事实上,适当的增强可以显著提高输入图像的质量,甚至比原始捕获的图像更好,因为原始捕获的图像通常被认为是质量最好的图像。在本文中,我们提出了两个最重要的贡献。第一个贡献是开发了一种新的无参考(NR)IQA 模型。给定一张图像,我们的质量度量首先通过对比度、锐度、亮度等分析提取 17 个特征,然后使用回归模块生成视觉质量度量,该模块使用大数据训练样本进行学习,这些样本比相关图像数据集的大小大得多。在九个数据集上的实验结果验证了我们的盲度量与典型的全参考、部分参考和 NR IQA 方法相比的优越性和效率。第二个贡献是基于质量优化建立了一个稳健的图像增强框架。对于输入图像,通过所提出的 NR-IQA 度量的指导,我们进行直方图修改,将图像亮度和对比度依次校正到适当的水平。彻底的测试表明,我们的框架可以很好地增强自然图像、低对比度图像、低光照图像和去雾图像。源代码将在 https://sites.google.com/site/guke198701/publications 上发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验