Borelli Tiago Cabral, Lovate Gabriel Lencioni, Scaranello Ana Flavia Tonelli, Ribeiro Lucas Ferreira, Zaramela Livia, Pereira-Dos-Santos Felipe Marcelo, Silva-Rocha Rafael, Guazzaroni María-Eugenia
Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-901, Brazil.
Department of Pediatrics, University of California San Diego, San Diego, CA 92161, USA.
Antibiotics (Basel). 2021 Apr 11;10(4):419. doi: 10.3390/antibiotics10040419.
(1) Background: The rise of multi-antibiotic resistant bacteria represents an emergent threat to human health. Here, we investigate antibiotic resistance mechanisms in bacteria of several species isolated from an intensive care unit in Brazil. (2) Methods: We used whole-genome analysis to identify antibiotic resistance genes (ARGs) and plasmids in 34 strains of Gram-negative and Gram-positive bacteria, providing the first genomic description of and clinical isolates from South America. (3) Results: We identified a high abundance of beta-lactamase genes in resistant organisms, including seven extended-spectrum beta-lactamases (OXA-1, OXA-10, CTX-M-1, KPC, TEM, HYDRO, BLP) shared between organisms from different species. Additionally, we identified several ARG-carrying plasmids indicating the potential for a fast transmission of resistance mechanism between bacterial strains. Furthermore, we uncovered two pairs of (near) identical plasmids exhibiting multi-drug resistance. Finally, since many highly resistant strains carry several different ARGs, we used functional genomics to investigate which of them were indeed functional. In this sense, for three bacterial strains (, , and ), we identified six beta-lactamase genes out of 15 predicted in silico as those mainly responsible for the resistance mechanisms observed, corroborating the existence of redundant resistance mechanisms in these organisms. (4) Conclusions: Systematic studies similar to the one presented here should help to prevent outbreaks of novel multidrug-resistant bacteria in healthcare facilities.
(1) 背景:多重耐药细菌的出现对人类健康构成了新的威胁。在此,我们调查了从巴西一家重症监护病房分离出的几种细菌的抗生素耐药机制。(2) 方法:我们使用全基因组分析来鉴定34株革兰氏阴性菌和革兰氏阳性菌中的抗生素耐药基因(ARGs)和质粒,提供了来自南美的 和 临床分离株的首次基因组描述。(3) 结果:我们在耐药生物中发现了大量的β-内酰胺酶基因,包括7种超广谱β-内酰胺酶(OXA-1、OXA-10、CTX-M-1、KPC、TEM、HYDRO、BLP),这些基因在不同物种的生物之间共享。此外,我们鉴定出了几个携带ARGs的质粒,表明耐药机制在细菌菌株之间快速传播的可能性。此外,我们还发现了两对(近乎)相同的表现出多重耐药性的质粒。最后,由于许多高耐药菌株携带几种不同的ARGs,我们使用功能基因组学来研究其中哪些确实具有功能。从这个意义上说,对于三株细菌( 、 和 ),我们在计算机预测的15个β-内酰胺酶基因中鉴定出6个是观察到的耐药机制的主要原因,证实了这些生物中存在冗余耐药机制。(4) 结论:类似于本文所呈现的系统性研究应有助于预防医疗机构中新型多重耐药细菌的爆发。