Suppr超能文献

利用动态特征进行宫颈癌前病变自动检测。

Using Dynamic Features for Automatic Cervical Precancer Detection.

作者信息

Viñals Roser, Vassilakos Pierre, Rad Mohammad Saeed, Undurraga Manuela, Petignat Patrick, Thiran Jean-Philippe

机构信息

Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Boulevard de la Cluse 30, 1205 Geneva, Switzerland.

出版信息

Diagnostics (Basel). 2021 Apr 17;11(4):716. doi: 10.3390/diagnostics11040716.

Abstract

Cervical cancer remains a major public health concern in developing countries due to financial and human resource constraints. Visual inspection with acetic acid (VIA) of the cervix was widely promoted and routinely used as a low-cost primary screening test in low- and middle-income countries. It can be performed by a variety of health workers and the result is immediate. VIA provides a transient whitening effect which appears and disappears differently in precancerous and cancerous lesions, as compared to benign conditions. Colposcopes are often used during VIA to magnify the view of the cervix and allow clinicians to visually assess it. However, this assessment is generally subjective and unreliable even for experienced clinicians. Computer-aided techniques may improve the accuracy of VIA diagnosis and be an important determinant in the promotion of cervical cancer screening. This work proposes a smartphone-based solution that automatically detects cervical precancer from the dynamic features extracted from videos taken during VIA. The proposed solution achieves a sensitivity and specificity of 0.9 and 0.87 respectively, and could be a solution for screening in countries that suffer from the lack of expensive tools such as colposcopes and well-trained clinicians.

摘要

由于资金和人力资源的限制,宫颈癌在发展中国家仍然是一个主要的公共卫生问题。在低收入和中等收入国家,宫颈醋酸白试验(VIA)作为一种低成本的初级筛查方法被广泛推广并常规使用。它可以由各类卫生工作者进行操作,且结果立即可得。VIA会产生一种短暂的变白效果,与良性病变相比,癌前病变和癌性病变中这种变白效果出现和消失的情况有所不同。在VIA过程中,通常会使用阴道镜来放大宫颈的视野,以便临床医生进行视觉评估。然而,即使对于经验丰富的临床医生来说,这种评估通常也是主观且不可靠的。计算机辅助技术可能会提高VIA诊断的准确性,并且是促进宫颈癌筛查的一个重要因素。这项工作提出了一种基于智能手机的解决方案,该方案可以从VIA过程中拍摄的视频中提取动态特征,从而自动检测宫颈的癌前病变。所提出的解决方案的灵敏度和特异性分别达到了0.9和0.87,对于那些缺乏阴道镜等昂贵工具以及训练有素的临床医生的国家来说,它可能是一种筛查解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a3/8073487/e6c1ac3c0806/diagnostics-11-00716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验