文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

碳纳米管减少对番茄作物的负面影响。

Carbon Nanotubes Decrease the Negative Impact of in Tomato Crop.

作者信息

González-García Yolanda, Cadenas-Pliego Gregorio, Alpuche-Solís Ángel Gabriel, Cabrera Raúl Iskander, Juárez-Maldonado Antonio

机构信息

Doctorado en Ciencias en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico.

Centro de Investigación en Química Aplicada, Saltillo 25294, Coahuila, Mexico.

出版信息

Nanomaterials (Basel). 2021 Apr 22;11(5):1080. doi: 10.3390/nano11051080.


DOI:10.3390/nano11051080
PMID:33922093
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8143504/
Abstract

The diseases that attack the tomato crop are a limiting factor for its production and are difficult to control or eradicate. Stem and fruit rot and leaf blight caused by causes severe damage and substantial yield losses. Carbon nanotubes (CNTs) could be an alternative for the control of pathogens since they have strong antimicrobial activity, in addition to inducing the activation of the antioxidant defense system in plants. In the present study, multi-walled carbon nanotubes were evaluated on the incidence and severity of . Moreover, to the impact they have on the antioxidant defense system and the photosynthetic capacity of the tomato crop. The results show that the application of CNTs had multiple positive effects on tomato crop. CNTs decreased the incidence and severity of . Furthermore, CNTs increased the fruit yield of tomato crop and dry shoot biomass. The antioxidant system was improved, since the content of ascorbic acid, flavonoids, and the activity of the glutathione peroxidase enzyme were increased. The net photosynthesis and water use efficiency were also increased by the application of CNTs. CNTs can be an option to control in tomato crop, and diminish the negative impact of this pathogen.

摘要

侵袭番茄作物的病害是其产量的限制因素,且难以控制或根除。由[病原体名称未给出]引起的茎腐病、果腐病和叶枯病会造成严重损害和大幅减产。碳纳米管(CNTs)可能是控制病原体的一种替代方法,因为它们具有强大的抗菌活性,此外还能诱导植物中抗氧化防御系统的激活。在本研究中,对多壁碳纳米管在[病害名称未给出]的发病率和严重程度方面进行了评估。此外,还评估了它们对番茄作物抗氧化防御系统和光合能力的影响。结果表明,碳纳米管的应用对番茄作物有多种积极影响。碳纳米管降低了[病害名称未给出]的发病率和严重程度。此外,碳纳米管提高了番茄作物的果实产量和地上部干生物量。抗氧化系统得到改善,因为抗坏血酸、类黄酮的含量以及谷胱甘肽过氧化物酶的活性都有所增加。碳纳米管的应用还提高了净光合速率和水分利用效率。碳纳米管可以作为控制番茄作物中[病害名称未给出]的一种选择,并减少这种病原体的负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/e4d0dd83f40d/nanomaterials-11-01080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/18cc37c5f7bb/nanomaterials-11-01080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/fb12137b49e2/nanomaterials-11-01080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/99e8a4c454eb/nanomaterials-11-01080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/7e03ee639cc8/nanomaterials-11-01080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/05d5b2784f66/nanomaterials-11-01080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/775db6c57524/nanomaterials-11-01080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/e4d0dd83f40d/nanomaterials-11-01080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/18cc37c5f7bb/nanomaterials-11-01080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/fb12137b49e2/nanomaterials-11-01080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/99e8a4c454eb/nanomaterials-11-01080-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/7e03ee639cc8/nanomaterials-11-01080-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/05d5b2784f66/nanomaterials-11-01080-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/775db6c57524/nanomaterials-11-01080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb6d/8143504/e4d0dd83f40d/nanomaterials-11-01080-g007.jpg

相似文献

[1]
Carbon Nanotubes Decrease the Negative Impact of in Tomato Crop.

Nanomaterials (Basel). 2021-4-22

[2]
The Application of Selenium and Copper Nanoparticles Modifies the Biochemical Responses of Tomato Plants under Stress by .

Int J Mol Sci. 2019-4-20

[3]
Impact of Carbon Nanomaterials on the Antioxidant System of Tomato Seedlings.

Int J Mol Sci. 2019-11-22

[4]
Seed Priming with Carbon Nanomaterials Improves the Bioactive Compounds of Tomato Plants under Saline Stress.

Plants (Basel). 2022-7-30

[5]
Altering Conidial Dispersal of by Modifying Microclimate in Tomato Crop Canopy.

Plant Pathol J. 2016-12

[6]
Silicon supplementation improves early blight resistance in Mill by modulating the expression of defense-related genes and antioxidant enzymes.

3 Biotech. 2021-5

[7]
Graphene-Cu Nanocomposites Induce Tolerance against , Increase Antioxidant Activity, and Decrease Stress in Tomato Plants.

Plants (Basel). 2023-6-11

[8]
Abscisic acid enhances resistance to Alternaria solani in tomato seedlings.

Plant Physiol Biochem. 2011-4-7

[9]
Antifungal potential of volatiles produced by BS-01 against in .

Front Plant Sci. 2023-1-26

[10]
Impact of L. on tomato plants infected with .

PeerJ. 2024

引用本文的文献

[1]
The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops-A Review.

Plants (Basel). 2025-7-15

[2]
Application of the theory of planned behavior to model the intention and behavior of tomato growers in pesticide exposure.

Heliyon. 2024-8-3

[3]
Synthesis, Development and Characterization of Nanotubes.

Nanomaterials (Basel). 2023-5-30

[4]
Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability.

Front Microbiol. 2023-5-3

[5]
Variation in the Outcome of Plant-Mediated Pathogen Interactions in Potato: Effects of Initial Infections on Conspecific vs. Heterospecific Subsequent Infections.

J Chem Ecol. 2023-8

[6]
Identification and functional analysis of protein secreted by Alternaria solani.

PLoS One. 2023

[7]
Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture.

Antibiotics (Basel). 2023-2-6

[8]
Physiological Response, Oxidative Stress Assessment and Aquaporin Genes Expression of Cherry Tomato ( L.) Exposed to Hyper-Harmonized Fullerene Water Complex.

Plants (Basel). 2022-10-22

[9]
Identification of effector CEP112 that promotes the infection of necrotrophic Alternaria solani.

BMC Plant Biol. 2022-9-29

[10]
Engineering plants with carbon nanotubes: a sustainable agriculture approach.

J Nanobiotechnology. 2022-6-14

本文引用的文献

[1]
Biostimulation and toxicity: The magnitude of the impact of nanomaterials in microorganisms and plants.

J Adv Res. 2021-7

[2]
Blocking effect of fullerene nanoparticles (nC) on the plant cell structure and its phytotoxicity.

Chemosphere. 2021-9

[3]
Effects of graphene oxide on tomato growth in different stages.

Plant Physiol Biochem. 2021-5

[4]
Comparative study of response of four crop species exposed to carbon nanotube contamination in soil.

Chemosphere. 2021-7

[5]
Predictability of Biotic Stress Structures Plant Defence Evolution.

Trends Ecol Evol. 2021-5

[6]
Nanoparticle-based genetic transformation of Cannabis sativa.

J Biotechnol. 2021-1-20

[7]
Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana.

J Hazard Mater. 2021-2-15

[8]
Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites.

Adv Colloid Interface Sci. 2020-10

[9]
Carbon nanotubes affect early growth, flowering time and phytohormones in tomato.

Chemosphere. 2020-5-11

[10]
ROS and oxidative burst: Roots in plant development.

Plant Divers. 2019-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索