Suppr超能文献

PyPLIF 辅助预测配体与受体结合的分子决定因素。

PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors.

机构信息

Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia.

Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.

出版信息

Molecules. 2021 Apr 22;26(9):2452. doi: 10.3390/molecules26092452.

Abstract

Identification of molecular determinants of receptor-ligand binding could significantly increase the quality of structure-based virtual screening protocols. In turn, drug design process, especially the fragment-based approaches, could benefit from the knowledge. Retrospective virtual screening campaigns by employing AutoDock Vina followed by protein-ligand interaction fingerprinting (PLIF) identification by using recently published PyPLIF HIPPOS were the main techniques used here. The ligands and decoys datasets from the enhanced version of the database of useful decoys (DUDE) targeting human G protein-coupled receptors (GPCRs) were employed in this research since the mutation data are available and could be used to retrospectively verify the prediction. The results show that the method presented in this article could pinpoint some retrospectively verified molecular determinants. The method is therefore suggested to be employed as a routine in drug design and discovery.

摘要

鉴定受体-配体结合的分子决定因素可以显著提高基于结构的虚拟筛选方案的质量。反过来,药物设计过程,特别是基于片段的方法,可以从这些知识中受益。这里主要使用的技术是采用 AutoDock Vina 进行回溯性虚拟筛选,然后使用最近发布的 PyPLIF HIPPOS 通过蛋白-配体相互作用指纹(PLIF)识别。由于可用突变数据,并且可以用于回溯验证预测,因此在这项研究中使用了针对人类 G 蛋白偶联受体(GPCR)的有用诱饵数据库(DUDE)增强版的配体和诱饵数据集。结果表明,本文提出的方法可以指出一些经过回溯验证的分子决定因素。因此,建议将该方法作为药物设计和发现的常规方法使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1853/8122758/d84203013f96/molecules-26-02452-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验