Suppr超能文献

PyPLIF HIPPOS 和受体整体对接提高了基于结构的虚拟筛选协议针对乙酰胆碱酯酶的预测准确性。

PyPLIF HIPPOS and Receptor Ensemble Docking Increase the Prediction Accuracy of the Structure-Based Virtual Screening Protocol Targeting Acetylcholinesterase.

机构信息

Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia.

Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.

出版信息

Molecules. 2022 Sep 2;27(17):5661. doi: 10.3390/molecules27175661.

Abstract

In this article, the upgrading process of the structure-based virtual screening (SBVS) protocol targeting acetylcholinesterase (AChE) previously published in 2017 is presented. The upgraded version of PyPLIF called PyPLIF HIPPOS and the receptor ensemble docking (RED) method using AutoDock Vina were employed to calculate the ensemble protein-ligand interaction fingerprints (ensPLIF) in a retrospective SBVS campaign targeting AChE. A machine learning technique called recursive partitioning and regression trees (RPART) was then used to optimize the prediction accuracy of the protocol by using the ensPLIF values as the descriptors. The best protocol resulting from this research outperformed the previously published SBVS protocol targeting AChE.

摘要

本文介绍了 2017 年发表的基于结构的虚拟筛选 (SBVS) 方案针对乙酰胆碱酯酶 (AChE) 的升级过程。升级后的 PyPLIF 版本(PyPLIF HIPPOS)和使用 AutoDock Vina 的受体集合对接 (RED) 方法被用于计算针对 AChE 的回顾性 SBVS 活动中的集合蛋白-配体相互作用指纹 (ensPLIF)。然后,使用递归分区和回归树 (RPART) 机器学习技术,通过使用 ensPLIF 值作为描述符,优化了方案的预测准确性。这项研究产生的最佳方案优于之前针对 AChE 的 SBVS 方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1625/9458236/c7d4de46c19f/molecules-27-05661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验