Suppr超能文献

SMOTE-DRNN:物联网网络中僵尸网络检测的深度学习算法。

SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks.

机构信息

Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.

Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, UK.

出版信息

Sensors (Basel). 2021 Apr 24;21(9):2985. doi: 10.3390/s21092985.

Abstract

Nowadays, hackers take illegal advantage of distributed resources in a network of computing devices (i.e., botnet) to launch cyberattacks against the Internet of Things (IoT). Recently, diverse Machine Learning (ML) and Deep Learning (DL) methods were proposed to detect botnet attacks in IoT networks. However, highly imbalanced network traffic data in the training set often degrade the classification performance of state-of-the-art ML and DL models, especially in classes with relatively few samples. In this paper, we propose an efficient DL-based botnet attack detection algorithm that can handle highly imbalanced network traffic data. Specifically, Synthetic Minority Oversampling Technique (SMOTE) generates additional minority samples to achieve class balance, while Deep Recurrent Neural Network (DRNN) learns hierarchical feature representations from the balanced network traffic data to perform discriminative classification. We develop DRNN and SMOTE-DRNN models with the Bot-IoT dataset, and the simulation results show that high-class imbalance in the training data adversely affects the precision, recall, F1 score, area under the receiver operating characteristic curve (AUC), geometric mean (GM) and Matthews correlation coefficient (MCC) of the DRNN model. On the other hand, the SMOTE-DRNN model achieved better classification performance with 99.50% precision, 99.75% recall, 99.62% F1 score, 99.87% AUC, 99.74% GM and 99.62% MCC. Additionally, the SMOTE-DRNN model outperformed state-of-the-art ML and DL models.

摘要

如今,黑客利用网络计算设备中的分布式资源(即僵尸网络)对物联网发起网络攻击。最近,各种机器学习(ML)和深度学习(DL)方法被提出用于检测物联网网络中的僵尸网络攻击。然而,训练集中高度不平衡的网络流量数据通常会降低最先进的 ML 和 DL 模型的分类性能,尤其是在样本相对较少的类别中。在本文中,我们提出了一种基于深度学习的僵尸网络攻击检测算法,可以处理高度不平衡的网络流量数据。具体来说,合成少数过采样技术(SMOTE)生成额外的少数样本以实现类别平衡,而深度递归神经网络(DRNN)则从平衡的网络流量数据中学习分层特征表示以进行有鉴别力的分类。我们使用 Bot-IoT 数据集开发了 DRNN 和 SMOTE-DRNN 模型,模拟结果表明,训练数据中的高类别不平衡会对 DRNN 模型的精度、召回率、F1 得分、接收者操作特征曲线下的面积(AUC)、几何平均值(GM)和马修斯相关系数(MCC)产生不利影响。另一方面,SMOTE-DRNN 模型的分类性能更好,其精度为 99.50%,召回率为 99.75%,F1 得分为 99.62%,AUC 为 99.87%,GM 为 99.74%,MCC 为 99.62%。此外,SMOTE-DRNN 模型还优于最先进的 ML 和 DL 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec52/8123033/8d6af936c894/sensors-21-02985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验