Suppr超能文献

使用多模型框架在不同数据集上对物联网僵尸网络检测的深度学习方法与传统方法进行比较分析。

Comparative analysis of deep learning and traditional methods for IoT botnet detection using a multi-model framework across diverse datasets.

作者信息

Ullah Saeed, Wu Junsheng, Lin Zhijun, Kamal Mian Muhammad, Mostafa Hala, Sheraz Muhammad, Chuah Teong Chee

机构信息

School of Software, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.

出版信息

Sci Rep. 2025 Aug 23;15(1):31072. doi: 10.1038/s41598-025-16553-w.

Abstract

The proliferation of Internet of Things (IoT) devices has created unprecedented cybersecurity vulnerabilities, with botnets emerging as a critical threat to network infrastructure. This study focuses on traditional machine learning and deep learning approaches, proposes a novel ensemble framework to address these issues, integrating Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), Random Forest (RF), and Logistic Regression (LR) via a weighted soft-voting mechanism. Our approach introduces a Quantile Uniform transformation to reduce feature skewness, a multi-layered feature selection method to enhance discriminative power, an individual performance of deep learning-traditional machine learning and a hybrid models (ensemble models) for robust detection. Evaluated on BOT-IOT, CICIOT2023, and IOT23 datasets, the framework achieves 100% accuracy on BOT-IOT, 99.2% on CICIOT2023, and 91.5% on IOT23, outperforming state-of-the-art models by up to 6.2%. These contributions advance IoT security by enabling scalable, high-performance detection adaptable to diverse network scenarios, with practical optimizations for real-world deployment.

摘要

物联网(IoT)设备的激增造成了前所未有的网络安全漏洞,僵尸网络成为对网络基础设施的重大威胁。本研究聚焦于传统机器学习和深度学习方法,提出了一种新颖的集成框架来解决这些问题,该框架通过加权软投票机制整合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)、随机森林(RF)和逻辑回归(LR)。我们的方法引入了分位数均匀变换以减少特征偏度,采用多层特征选择方法来增强判别力,评估了深度学习 - 传统机器学习的个体性能以及用于稳健检测的混合模型(集成模型)。在BOT - IOT、CICIOT2023和IOT23数据集上进行评估时,该框架在BOT - IOT上的准确率达到100%,在CICIOT2023上为99.2%,在IOT23上为91.5%,比最先进的模型性能提升高达6.2%。这些成果通过实现可扩展的、高性能的检测,使其适用于各种网络场景,并针对实际部署进行了实用优化,从而推动了物联网安全的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a971/12375122/f247cadfa536/41598_2025_16553_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验