Ullah Saeed, Wu Junsheng, Lin Zhijun, Kamal Mian Muhammad, Mostafa Hala, Sheraz Muhammad, Chuah Teong Chee
School of Software, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
Sci Rep. 2025 Aug 23;15(1):31072. doi: 10.1038/s41598-025-16553-w.
The proliferation of Internet of Things (IoT) devices has created unprecedented cybersecurity vulnerabilities, with botnets emerging as a critical threat to network infrastructure. This study focuses on traditional machine learning and deep learning approaches, proposes a novel ensemble framework to address these issues, integrating Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (BiLSTM), Random Forest (RF), and Logistic Regression (LR) via a weighted soft-voting mechanism. Our approach introduces a Quantile Uniform transformation to reduce feature skewness, a multi-layered feature selection method to enhance discriminative power, an individual performance of deep learning-traditional machine learning and a hybrid models (ensemble models) for robust detection. Evaluated on BOT-IOT, CICIOT2023, and IOT23 datasets, the framework achieves 100% accuracy on BOT-IOT, 99.2% on CICIOT2023, and 91.5% on IOT23, outperforming state-of-the-art models by up to 6.2%. These contributions advance IoT security by enabling scalable, high-performance detection adaptable to diverse network scenarios, with practical optimizations for real-world deployment.
物联网(IoT)设备的激增造成了前所未有的网络安全漏洞,僵尸网络成为对网络基础设施的重大威胁。本研究聚焦于传统机器学习和深度学习方法,提出了一种新颖的集成框架来解决这些问题,该框架通过加权软投票机制整合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)、随机森林(RF)和逻辑回归(LR)。我们的方法引入了分位数均匀变换以减少特征偏度,采用多层特征选择方法来增强判别力,评估了深度学习 - 传统机器学习的个体性能以及用于稳健检测的混合模型(集成模型)。在BOT - IOT、CICIOT2023和IOT23数据集上进行评估时,该框架在BOT - IOT上的准确率达到100%,在CICIOT2023上为99.2%,在IOT23上为91.5%,比最先进的模型性能提升高达6.2%。这些成果通过实现可扩展的、高性能的检测,使其适用于各种网络场景,并针对实际部署进行了实用优化,从而推动了物联网安全的发展。