Hu Minhui, Zeng Kaiwei, Wang Yaohua, Guo Yang
College of Computer Science, National University of Defense Technology, Changsha 410073, China.
Entropy (Basel). 2021 Apr 24;23(5):522. doi: 10.3390/e23050522.
Unsupervised domain adaptation is a challenging task in person re-identification (re-ID). Recently, cluster-based methods achieve good performance; clustering and training are two important phases in these methods. For clustering, one major issue of existing methods is that they do not fully exploit the information in outliers by either discarding outliers in clusters or simply merging outliers. For training, existing methods only use source features for pretraining and target features for fine-tuning and do not make full use of all valuable information in source datasets and target datasets. To solve these problems, we propose a hreshold-based ierarchical clustering method with ontrastive loss (THC). There are two features of THC: (1) it regards outliers as single-sample clusters to participate in training. It well preserves the information in outliers without setting cluster number and combines advantages of existing clustering methods; (2) it uses contrastive loss to make full use of all valuable information, including source-class centroids, target-cluster centroids and single-sample clusters, thus achieving better performance. We conduct extensive experiments on Market-1501, DukeMTMC-reID and MSMT17. Results show our method achieves state of the art.
无监督域适应是行人重识别(re-ID)中的一项具有挑战性的任务。最近,基于聚类的方法取得了良好的性能;聚类和训练是这些方法中的两个重要阶段。对于聚类,现有方法的一个主要问题是,它们要么在聚类中丢弃离群值,要么简单地合并离群值,没有充分利用离群值中的信息。对于训练,现有方法仅使用源特征进行预训练,使用目标特征进行微调,没有充分利用源数据集和目标数据集中的所有有价值信息。为了解决这些问题,我们提出了一种基于阈值的带有对比损失的层次聚类方法(THC)。THC有两个特点:(1)它将离群值视为单样本聚类来参与训练。它在不设置聚类数量的情况下很好地保留了离群值中的信息,并结合了现有聚类方法的优点;(2)它使用对比损失来充分利用所有有价值的信息,包括源类质心、目标聚类质心和单样本聚类,从而取得更好的性能。我们在Market-1501、DukeMTMC-reID和MSMT17上进行了广泛的实验。结果表明我们的方法达到了当前最优水平。