Ji Haoxuanye, Wang Le, Zhou Sanping, Tang Wei, Zheng Nanning, Hua Gang
IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):9165-9179. doi: 10.1109/TNNLS.2024.3409685. Epub 2025 May 2.
Unsupervised person re-identification (Re-ID) is challenging due to the lack of ground-truth labels. Most existing methods rely on pseudo labels estimated via iterative clustering and thus are highly susceptible to performance penalties incurred by the inaccurate estimated number of clusters. Alternatively, we utilize the sample pairs with pairwise pseudo labels to guide the feature learning to avoid the dilemma of determining cluster numbers. In this article, we propose a meta pairwise relationship distillation (MPRD) method that incorporates a graph convolutional network (GCN) to provide high-fidelity pairwise relationships to supervise the model training. A small amount of metadata with very-confidence pairwise relationships and the unlabeled pairs with the provided pseudo pairwise relationships participate in the GCN training. Besides, we introduce a hard sample deduction (HSD) module to timely mine the sample pairs with error-prone pairwise pseudo labels to mitigate the misled optimization by noisy labels. Furthermore, since the features of each positive pair represent the same person, we design a positive pair alignment (PPA) module to reduce the redundant information in each feature, which is achieved by minimizing the difference between each positive pair's feature distributions. Extensive experiments on the Market-1501, DukeMTMC-reID, and MSMT17 datasets show that our method outperforms the state-of-the-art unsupervised methods.
无监督行人重识别(Re-ID)由于缺乏真实标签而具有挑战性。大多数现有方法依赖于通过迭代聚类估计的伪标签,因此极易受到聚类数量估计不准确所带来的性能损失的影响。相比之下,我们利用带有成对伪标签的样本对来指导特征学习,以避免确定聚类数量的困境。在本文中,我们提出了一种元成对关系蒸馏(MPRD)方法,该方法结合了图卷积网络(GCN)以提供高保真的成对关系来监督模型训练。少量具有高置信度成对关系的元数据以及带有提供的伪成对关系的无标签对参与GCN训练。此外,我们引入了一个硬样本扣除(HSD)模块,以及时挖掘具有易出错成对伪标签的样本对,以减轻噪声标签对优化的误导。此外,由于每个正样本对的特征代表同一个人,我们设计了一个正样本对对齐(PPA)模块来减少每个特征中的冗余信息,这是通过最小化每个正样本对的特征分布之间的差异来实现的。在Market-1501、DukeMTMC-reID和MSMT17数据集上进行的大量实验表明,我们的方法优于当前最先进的无监督方法。