文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习融合有助于药物重定位和发现中的解剖治疗化学识别。

Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.

机构信息

Life Science School, Beijing University of Chinese Medicine.

Chinese Medicine School, Beijing University of Chinese Medicine.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab289.


DOI:10.1093/bib/bbab289
PMID:34368838
Abstract

The advent of large-scale biomedical data and computational algorithms provides new opportunities for drug repurposing and discovery. It is of great interest to find an appropriate data representation and modeling method to facilitate these studies. The anatomical therapeutic chemical (ATC) classification system, proposed by the World Health Organization (WHO), is an essential source of information for drug repurposing and discovery. Besides, computational methods are applied to predict drug ATC classification. We conducted a systematic review of ATC computational prediction studies and revealed the differences in data sets, data representation, algorithm approaches, and evaluation metrics. We then proposed a deep fusion learning (DFL) framework to optimize the ATC prediction model, namely DeepATC. The methods based on graph convolutional network, inferring biological network and multimodel attentive fusion network were applied in DeepATC to extract the molecular topological information and low-dimensional representation from the molecular graph and heterogeneous biological networks. The results indicated that DeepATC achieved superior model performance with area under the curve (AUC) value at 0.968. Furthermore, the DFL framework was performed for the transcriptome data-based ATC prediction, as well as another independent task that is significantly relevant to drug discovery, namely drug-target interaction. The DFL-based model achieved excellent performance in the above-extended validation task, suggesting that the idea of aggregating the heterogeneous biological network and node's (molecule or protein) self-topological features will bring inspiration for broader drug repurposing and discovery research.

摘要

大规模生物医学数据和计算算法的出现为药物再利用和发现提供了新的机会。找到一种合适的数据表示和建模方法来促进这些研究是非常有意义的。世界卫生组织(WHO)提出的解剖治疗化学(ATC)分类系统是药物再利用和发现的重要信息来源。此外,还应用计算方法来预测药物 ATC 分类。我们对 ATC 计算预测研究进行了系统综述,揭示了数据集、数据表示、算法方法和评估指标的差异。然后,我们提出了一种深度融合学习(DFL)框架来优化 ATC 预测模型,即 DeepATC。基于图卷积网络的方法、推断生物网络和多模型注意融合网络被应用于 DeepATC 中,从分子图和异构生物网络中提取分子拓扑信息和低维表示。结果表明,DeepATC 的曲线下面积(AUC)值达到 0.968,实现了卓越的模型性能。此外,还对基于转录组数据的 ATC 预测以及与药物发现密切相关的另一个独立任务进行了 DFL 框架操作,即药物-靶标相互作用。基于 DFL 的模型在上述扩展验证任务中表现出色,这表明聚合异构生物网络和节点(分子或蛋白质)自身拓扑特征的想法将为更广泛的药物再利用和发现研究带来启示。

相似文献

[1]
Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.

Brief Bioinform. 2021-11-5

[2]
Predicting drug-target interaction network using deep learning model.

Comput Biol Chem. 2019-3-25

[3]
An effective multi-task learning framework for drug repurposing based on graph representation learning.

Methods. 2023-10

[4]
Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding.

Curr Comput Aided Drug Des. 2024

[5]
A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.

Molecules. 2023-9-9

[6]
Convolutional Neural Networks for ATC Classification.

Curr Pharm Des. 2018

[7]
Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.

Methods Mol Biol. 2019

[8]
Drug repositioning based on the heterogeneous information fusion graph convolutional network.

Brief Bioinform. 2021-11-5

[9]
Computational drug repositioning with attention walking.

Sci Rep. 2024-5-2

[10]
Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.

Methods Mol Biol. 2021

引用本文的文献

[1]
GraphATC: advancing multilevel and multi-label anatomical therapeutic chemical classification via atom-level graph learning.

Brief Bioinform. 2025-3-4

[2]
Prediction of drug's anatomical therapeutic chemical (ATC) code by constructing biological profiles of ATC codes.

BMC Bioinformatics. 2025-3-21

[3]
Open challenges and opportunities in federated foundation models towards biomedical healthcare.

BioData Min. 2025-1-4

[4]
Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine.

Brief Bioinform. 2023-11-22

[5]
Multimodal deep learning for biomedical data fusion: a review.

Brief Bioinform. 2022-3-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索