Suppr超能文献

COVID-19 暴露风险:访问持续时间数据可以为我们的日常活动选择提供信息:利用意大利热那亚大都市区的社区流动数据进行的流行病学调查。

Risk of Exposure to COVID-19: Visit Duration Data Can Inform Our Daily Activities Choices: An Epidemiological Investigation Using Community Mobility Data from the Metropolitan Area of Genoa, Italy.

机构信息

Institute of Leadership and Management in Health, Kingston Business School, Kingston University, Kingston-upon-Thames KT2 7LB, UK.

出版信息

Int J Environ Res Public Health. 2021 Apr 27;18(9):4632. doi: 10.3390/ijerph18094632.

Abstract

COVID-19 spreads mainly among people who are in close contact. Policymakers mostly resorted to normative measures to limit close contacts and impose social distancing. Our study aimed to estimate the risk of exposure to COVID-19 by location and activity in crowded metropolitan areas. The risk of exposure to COVID-19 was defined as the product of crowding (people within a six feet distance) and exposure duration (fraction of 15 min). Our epidemiological investigation used aggregated and anonymized mobility data from Google Maps to estimate the visit duration. We collected visit duration data for 561 premises in the metropolitan area of Genoa, Italy from October 2020 to January 2021. The sample was then clustered into 14 everyday activities, from grocery shopping to the post office. Crowding data by activity were obtained from pre-existing building norms and new government measures to contain the pandemic. The study found significant variance in the risk of exposure to COVID-19 among activities and, for the same activity, among locations. The empirical determination of the risk of exposure to COVID-19 can inform national and local public health policies to contain the pandemic's diffusion. Its simple numerical form can help policymakers effectively communicate difficult decisions affecting our daily lives. Most importantly, risk data by location can help us rethink our daily routine and make informed, responsible choices when we decide to go out.

摘要

COVID-19 主要在密切接触者中传播。政策制定者主要采取规范措施来限制密切接触并实施社交距离。我们的研究旨在估计在人口密集的大都市区中,根据位置和活动而感染 COVID-19 的风险。COVID-19 的暴露风险定义为拥挤程度(六英尺以内的人数)与暴露持续时间(15 分钟的分数)的乘积。我们的流行病学调查使用来自 Google Maps 的聚合和匿名移动数据来估算访问持续时间。我们从 2020 年 10 月至 2021 年 1 月,在意大利热那亚大都市区的 561 个场所收集了访问持续时间数据。然后,该样本被聚类为 14 种日常活动,从杂货店购物到邮局。通过活动获得的拥挤数据来自现有的建筑规范和新的政府措施,以遏制大流行。研究发现,在活动之间以及在同一活动中,暴露于 COVID-19 的风险存在显著差异。COVID-19 暴露风险的经验确定可以为遏制大流行的扩散提供国家和地方公共卫生政策的信息。其简单的数字形式可以帮助政策制定者有效地传达影响我们日常生活的困难决定。最重要的是,按位置划分的风险数据可以帮助我们重新思考我们的日常生活,并在决定外出时做出明智,负责任的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c77/8123828/b4d19d049df0/ijerph-18-04632-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验