文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态面板数据分析与美国大都市地区 COVID-19 的监测:纵向趋势分析。

Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis.

机构信息

Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.

Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.

出版信息

J Med Internet Res. 2021 Feb 9;23(2):e26081. doi: 10.2196/26081.


DOI:10.2196/26081
PMID:33481757
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7879727/
Abstract

BACKGROUND: The COVID-19 pandemic has had profound and differential impacts on metropolitan areas across the United States and around the world. Within the United States, metropolitan areas that were hit earliest with the pandemic and reacted with scientifically based health policy were able to contain the virus by late spring. For other areas that kept businesses open, the first wave in the United States hit in mid-summer. As the weather turns colder, universities resume classes, and people tire of lockdowns, a second wave is ascending in both metropolitan and rural areas. It becomes more obvious that additional SARS-CoV-2 surveillance is needed at the local level to track recent shifts in the pandemic, rates of increase, and persistence. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk and persistence, and weekly shifts, to better understand and manage risk in metropolitan areas. Existing surveillance measures coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until, and after, an effective vaccine is developed. Here, we provide values for novel indicators to measure COVID-19 transmission at the metropolitan area level. METHODS: Using a longitudinal trend analysis study design, we extracted 260 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in the 25 largest US metropolitan areas as a function of the prior number of cases and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Minneapolis and Chicago have the greatest average number of daily new positive results per standardized 100,000 population (which we refer to as speed). Extreme behavior in Minneapolis showed an increase in speed from 17 to 30 (67%) in 1 week. The jerk and acceleration calculated for these areas also showed extreme behavior. The dynamic panel data model shows that Minneapolis, Chicago, and Detroit have the largest persistence effects, meaning that new cases pertaining to a specific week are statistically attributable to new cases from the prior week. CONCLUSIONS: Three of the metropolitan areas with historically early and harsh winters have the highest persistence effects out of the top 25 most populous metropolitan areas in the United States at the beginning of their cold weather season. With these persistence effects, and with indoor activities becoming more popular as the weather gets colder, stringent COVID-19 regulations will be more important than ever to flatten the second wave of the pandemic. As colder weather grips more of the nation, southern metropolitan areas may also see large spikes in the number of cases.

摘要

背景:COVID-19 大流行对美国和世界各地的大都市区产生了深远而不同的影响。在美国,最早受到大流行影响并采取基于科学的卫生政策应对的大都市区能够在春末控制住病毒。而对于那些继续营业的地区,美国的第一波疫情发生在仲夏。随着天气转冷,大学复课,人们对封锁感到厌倦,大都市和农村地区都出现了第二波疫情。越来越明显的是,需要在地方一级进行额外的 SARS-CoV-2 监测,以跟踪大流行近期的变化、增长率和持续性。 目的:本研究的目的是提供用于 COVID-19 传播的高级监测指标,这些指标考虑了速度、加速度、急动度和持续性以及每周的变化,以便更好地了解和管理大都市区的风险。现有的监测措施以及我们对传播的动态指标将为控制 COVID-19 大流行提供信息,直到开发出有效的疫苗,并在之后继续提供信息。在这里,我们提供了用于衡量大都市区 COVID-19 传播的新型指标的值。 方法:使用纵向趋势分析研究设计,我们从公共卫生登记处提取了 260 天的 COVID-19 数据。我们使用经验差分方程来衡量美国 25 个最大大都市区的每日病例数,作为基于动态面板数据模型的先前病例数和每周变化变量的函数,该模型使用广义矩估计方法通过在 R 中实现 Arellano-Bond 估计器进行估计。 结果:明尼阿波利斯和芝加哥的标准化每 10 万人每日新增阳性结果数量最多(我们称之为速度)。明尼阿波利斯的极端行为显示,速度在一周内从 17 增加到 30(增加了 67%)。为这些地区计算的急动度和加速度也显示出了极端行为。动态面板数据模型显示,明尼阿波利斯、芝加哥和底特律的持续性影响最大,这意味着与特定一周相关的新病例在统计上归因于前一周的新病例。 结论:在寒冷天气季节开始时,美国人口最多的 25 个大都市区中,有三个历史上冬季最早且最严酷的大都市区的持续性影响最大。由于这些持续性影响,以及随着天气变冷室内活动变得更加流行,严格的 COVID-19 规定将比以往任何时候都更加重要,以遏制大流行的第二波。随着更冷的天气笼罩更多的国家,南部大都市区的病例数量也可能大幅增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666f/7879727/98e3d07a37db/jmir_v23i2e26081_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666f/7879727/5041e2f49e1a/jmir_v23i2e26081_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666f/7879727/98e3d07a37db/jmir_v23i2e26081_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666f/7879727/5041e2f49e1a/jmir_v23i2e26081_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/666f/7879727/98e3d07a37db/jmir_v23i2e26081_fig2.jpg

相似文献

[1]
Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis.

J Med Internet Res. 2021-2-9

[2]
Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis.

J Med Internet Res. 2021-2-3

[3]
SARS-CoV-2 Surveillance in the Middle East and North Africa: Longitudinal Trend Analysis.

J Med Internet Res. 2021-1-15

[4]
SARS-CoV-2 Wave Two Surveillance in East Asia and the Pacific: Longitudinal Trend Analysis.

J Med Internet Res. 2021-2-1

[5]
Dynamic Public Health Surveillance to Track and Mitigate the US COVID-19 Epidemic: Longitudinal Trend Analysis Study.

J Med Internet Res. 2020-12-3

[6]
A SARS-CoV-2 Surveillance System in Sub-Saharan Africa: Modeling Study for Persistence and Transmission to Inform Policy.

J Med Internet Res. 2020-11-19

[7]
COVID-19 Surveillance Updates in US Metropolitan Areas: Dynamic Panel Data Modeling.

JMIR Public Health Surveill. 2022-2-24

[8]
Latin America and the Caribbean SARS-CoV-2 Surveillance: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2021-4-27

[9]
SARS-CoV-2 Surveillance System in Canada: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2021-5-10

[10]
Surveillance of the Second Wave of COVID-19 in Europe: Longitudinal Trend Analyses.

JMIR Public Health Surveill. 2021-4-28

引用本文的文献

[1]
Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in East Asia and the Pacific Region: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2025-2-21

[2]
Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in Canada: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2024-12-5

[3]
South Asia's COVID-19 History and Surveillance: Updated Epidemiological Assessment.

JMIR Public Health Surveill. 2024-8-26

[4]
Surveillance Metrics and History of the COVID-19 Pandemic in Central Asia: Updated Epidemiological Assessment.

JMIR Public Health Surveill. 2024-8-28

[5]
Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in Sub-Saharan Africa: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2024-10-23

[6]
Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in Latin America and the Caribbean: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2024-5-17

[7]
Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in Europe: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2024-6-21

[8]
Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in the Middle East and North Africa: Longitudinal Trend Analysis.

JMIR Public Health Surveill. 2024-6-12

[9]
Overlapping Delta and Omicron Outbreaks During the COVID-19 Pandemic: Dynamic Panel Data Estimates.

JMIR Public Health Surveill. 2022-6-3

[10]
Has Omicron Changed the Evolution of the Pandemic?

JMIR Public Health Surveill. 2022-1-31

本文引用的文献

[1]
Forecasting the spread of COVID-19 under different reopening strategies.

Sci Rep. 2020-11-23

[2]
Dynamic Public Health Surveillance to Track and Mitigate the US COVID-19 Epidemic: Longitudinal Trend Analysis Study.

J Med Internet Res. 2020-12-3

[3]
A SARS-CoV-2 Surveillance System in Sub-Saharan Africa: Modeling Study for Persistence and Transmission to Inform Policy.

J Med Internet Res. 2020-11-19

[4]
Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York City region.

Genome Res. 2020-10-22

[5]
Crowding and the shape of COVID-19 epidemics.

Nat Med. 2020-10-5

[6]
Dynamic Panel Surveillance of COVID-19 Transmission in the United States to Inform Health Policy: Observational Statistical Study.

J Med Internet Res. 2020-10-5

[7]
Dynamic Panel Estimate-Based Health Surveillance of SARS-CoV-2 Infection Rates to Inform Public Health Policy: Model Development and Validation.

J Med Internet Res. 2020-9-22

[8]
US-county level variation in intersecting individual, household and community characteristics relevant to COVID-19 and planning an equitable response: a cross-sectional analysis.

BMJ Open. 2020-9-1

[9]
States Divided: The Implications of American Federalism for COVID-19.

Public Adm Rev. 2020

[10]
Could masks curtail the post-lockdown resurgence of COVID-19 in the US?

Math Biosci. 2020-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索