Suppr超能文献

确定卫生支出决定因素:管理心血管疾病经济负担的模型。

Identification of Health Expenditures Determinants: A Model to Manage the Economic Burden of Cardiovascular Disease.

机构信息

Department of Economics, University of Foggia, 71121 Foggia, Italy.

Sector of Hygiene, Department of Medical and Surgical Sciences, University of Foggia, 71121 Foggia, Italy.

出版信息

Int J Environ Res Public Health. 2021 Apr 27;18(9):4652. doi: 10.3390/ijerph18094652.

Abstract

The purpose of this paper is to investigate the determinants influencing the costs of cardiovascular disease in the regional health service in Italy's Apulia region from 2014 to 2016. Data for patients with acute myocardial infarction (AMI), heart failure (HF), and atrial fibrillation (AF) were collected from the hospital discharge registry. Generalized linear models (GLM), and generalized linear mixed models (GLMM) were used to identify the role of random effects in improving the model performance. The study was based on socio-demographic variables and disease-specific variables (diagnosis-related group, hospitalization type, hospital stay, surgery, and economic burden of the hospital discharge form). Firstly, both models indicated an increase in health costs in 2016, and lower spending values for women ( < 0.001) were shown. GLMM indicates a significant increase in health expenditure with increasing age ( < 0.001). Day-hospital has the lowest cost, surgery increases the cost, and AMI is the most expensive pathology, contrary to AF ( < 0.001). Secondly, AIC and BIC assume the lowest values for the GLMM model, indicating the random effects' relevance in improving the model performance. This study is the first that considers real data to estimate the economic burden of CVD from the regional health service's perspective. It appears significant for its ability to provide a large set of estimates of the economic burden of CVD, providing information to managers for health management and planning.

摘要

本文旨在研究 2014 年至 2016 年意大利普利亚地区区域卫生服务中心心血管疾病成本的影响因素。急性心肌梗死(AMI)、心力衰竭(HF)和心房颤动(AF)患者的数据来自住院患者出院登记系统。采用广义线性模型(GLM)和广义线性混合模型(GLMM)确定随机效应在提高模型性能方面的作用。本研究基于社会人口统计学变量和疾病特定变量(诊断相关组、住院类型、住院时间、手术以及出院表单的经济负担)。首先,这两种模型均表明 2016 年的医疗费用增加,且女性的支出值较低(<0.001)。GLMM 表明,随着年龄的增加,医疗支出显著增加(<0.001)。日间医院的成本最低,手术会增加成本,AMI 的病理费用最高,而 AF 则相反(<0.001)。其次,AIC 和 BIC 认为 GLMM 模型的数值最低,这表明随机效应在提高模型性能方面具有重要意义。本研究首次利用真实数据从区域卫生服务的角度来估计 CVD 的经济负担。它具有提供大量 CVD 经济负担估计值的能力,为管理人员的健康管理和规划提供信息,因此具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eea1/8124329/117de60a5325/ijerph-18-04652-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验