Suppr超能文献

自动车牌识别:相关算法的详细调查。

Automatic Number Plate Recognition:A Detailed Survey of Relevant Algorithms.

机构信息

Department of Telecommunication Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan.

Department of Telecommunication Engineering, University of Engineering and Technology, Mardan 23200, Pakistan.

出版信息

Sensors (Basel). 2021 Apr 26;21(9):3028. doi: 10.3390/s21093028.

Abstract

Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.

摘要

面向智能车辆和智能交通系统 (ITS) 的技术和服务继续彻底改变人类生活的许多方面。本文对当前自动车牌识别 (ANPR) 系统的技术和进展进行了详细调查,并对各种实时测试和模拟算法进行了全面的性能比较,包括涉及计算机视觉 (CV) 的算法。ANPR 技术能够通过识别技术检测和识别车辆的车牌。即使使用最好的算法,成功部署 ANPR 系统可能还需要额外的硬件来最大限度地提高其准确性。车牌状况、非标准化格式、复杂场景、相机质量、相机安装位置、对失真、运动模糊、对比度问题、反射、处理和内存限制、环境条件、室内/室外或白天/夜间拍摄、软件工具或其他基于硬件的限制的容忍度都可能会影响其性能。这种不一致性、挑战性的环境和其他复杂性使得 ANPR 成为研究人员感兴趣的领域。物联网开始塑造许多行业的未来,并为 ITS 开辟新途径。通过与 RFID 系统、GPS、Android 平台和其他类似技术集成,ANPR 可以得到很好的利用。深度学习技术在 CV 领域得到了广泛应用,以提高检测率。本研究旨在通过引用相关的先前工作,分析和展示提取、分割和识别技术,并提供该领域未来趋势的指南,从而推进基于 CV 算法的 ITS(ANPR)的知识现状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7785/8123416/78f33128f3fb/sensors-21-03028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验