Suppr超能文献

基于智能交通系统数据和深度学习的逐时 OD 矩阵估计

Hourly Origin-Destination Matrix Estimation Using Intelligent Transportation Systems Data and Deep Learning.

机构信息

School of Civil Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran.

Department of Civil-Transportation, Imam Khomeini International University (IKIU), Qazvin 34148-96818, Iran.

出版信息

Sensors (Basel). 2021 Oct 26;21(21):7080. doi: 10.3390/s21217080.

Abstract

Predicting the travel demand plays an indispensable role in urban transportation planning. Data collection methods for estimating the origin-destination (OD) demand matrix are being extensively shifted from traditional survey techniques to the pre-collected data from intelligent transportation systems (ITSs). This shift is partly due to the high cost of conducting traditional surveys and partly due to the diversity of scattered data produced by ITSs and the opportunity to derive extra benefits out of this big data. This study attempts to predict the OD matrix of Tehran metropolis using a set of ITS data, including the data extracted from automatic number plate recognition (ANPR) cameras, smart fare cards, loop detectors at intersections, global positioning systems (GPS) of navigation software, socio-economic and demographic characteristics as well as land-use features of zones. For this purpose, five models based on machine learning (ML) techniques are developed for training and test. In evaluating the performance of the models, the statistical methods show that the convolutional neural network (CNN) leads to the best performance in terms of accuracy in predicting the OD matrix and has the lowest error in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE). Moreover, the predicted OD matrix was structurally compared with the ground truth matrix, and the CNN model also shows the highest structural similarity with the ground truth OD matrix in the presented case.

摘要

预测出行需求在城市交通规划中起着不可或缺的作用。用于估计起讫点(OD)需求矩阵的数据源收集方法正在从传统的调查技术广泛转变为智能交通系统(ITS)中预先收集的数据。这种转变部分是由于进行传统调查的成本高昂,部分是由于 ITS 产生的分散数据的多样性,以及从这些大数据中获得额外收益的机会。本研究试图使用一组 ITS 数据来预测德黑兰大都市的 OD 矩阵,包括从自动车牌识别(ANPR)相机、智能票价卡、交叉口环形探测器、导航软件的全球定位系统(GPS)、社会经济和人口统计特征以及区域的土地利用特征中提取的数据。为此,基于机器学习(ML)技术开发了五个模型用于训练和测试。在评估模型的性能时,统计方法表明,卷积神经网络(CNN)在预测 OD 矩阵的准确性方面表现最佳,在均方根误差(RMSE)和平均绝对百分比误差(MAPE)方面误差最低。此外,还对预测的 OD 矩阵与真实矩阵进行了结构比较,在本案例中,CNN 模型与真实 OD 矩阵的结构相似度最高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验