Suppr超能文献

一种用于无人机路径规划的混合差分共生生物体搜索算法。

A Hybrid Differential Symbiotic Organisms Search Algorithm for UAV Path Planning.

机构信息

College of Systems Engineering, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2021 Apr 26;21(9):3037. doi: 10.3390/s21093037.

Abstract

Unmanned aerial vehicle (UAV) path planning is crucial in UAV mission fulfillment, with the aim of finding a satisfactory path within affordable time and moderate computation resources. The problem is challenging due to the complexity of the flight environment, especially in three-dimensional scenarios with obstacles. To solve the problem, a hybrid differential symbiotic organisms search (HDSOS) algorithm is proposed by combining the mutation strategy of differential evolution (DE) with the modified strategies of symbiotic organism search (SOS). The proposed algorithm preserves the local search capability of SOS, and at the same time has impressive global search ability. The concept of traction function is put forward and used to improve the efficiency. Moreover, a perturbation strategy is adopted to further enhance the robustness of the algorithm. Extensive simulation experiments and comparative study in two-dimensional and three-dimensional scenarios show the superiority of the proposed algorithm compared with particle swarm optimization (PSO), DE, and SOS algorithm.

摘要

无人机 (UAV) 路径规划在无人机任务执行中至关重要,其目的是在可承受的时间和适度的计算资源内找到一条满意的路径。由于飞行环境的复杂性,特别是在具有障碍物的三维场景中,该问题具有挑战性。为了解决这个问题,通过将差分进化 (DE) 的突变策略与共生生物搜索 (SOS) 的改进策略相结合,提出了一种混合差分共生生物搜索 (HDSOS) 算法。所提出的算法保留了 SOS 的局部搜索能力,同时具有令人印象深刻的全局搜索能力。提出了牵引函数的概念并用于提高效率。此外,采用了一种摄动策略来进一步增强算法的鲁棒性。在二维和三维场景中的大量仿真实验和比较研究表明,与粒子群优化 (PSO)、DE 和 SOS 算法相比,所提出的算法具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be5c/8123715/8ab8d03d9948/sensors-21-03037-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验