Suppr超能文献

用于无人机路径规划的差分进化控制参数优化

Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning.

作者信息

Kok Kai Yit, Rajendran Parvathy

机构信息

School of Aerospace Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia.

出版信息

PLoS One. 2016 Mar 4;11(3):e0150558. doi: 10.1371/journal.pone.0150558. eCollection 2016.

Abstract

The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.

摘要

差分进化算法已在无人机(UAV)路径规划中得到广泛应用。目前,差分进化算法存在四个随机调整参数,即种群规模、差分权重、交叉率和迭代次数。这些调整参数需要与用户对路径和计算成本权重的设置一起使用。然而,这些调整参数的最佳设置会因应用而异。本文提出了一种差分进化算法的优化方法,用于调整无人机路径规划的参数,而不是通过反复试验。本研究关注的参数是种群规模、差分权重、交叉率和迭代次数。所开发的算法使用户能够简单地定义路径和计算成本之间所需的权重,以便根据用户要求以所需的最小迭代次数收敛。总之,所提出的无人机路径规划差分进化算法调整参数的优化方法加快并改善了最终输出路径和计算成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b5f/4778915/870b90829af4/pone.0150558.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验