Suppr超能文献

基于生物启发优化的无人机路径规划算法:综述。

Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey.

机构信息

Department of Computer Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.

出版信息

Sensors (Basel). 2023 Mar 12;23(6):3051. doi: 10.3390/s23063051.

Abstract

Advancements in electronics and software have enabled the rapid development of unmanned aerial vehicles (UAVs) and UAV-assisted applications. Although the mobility of UAVs allows for flexible deployment of networks, it introduces challenges regarding throughput, delay, cost, and energy. Therefore, path planning is an important aspect of UAV communications. Bio-inspired algorithms rely on the inspiration and principles of the biological evolution of nature to achieve robust survival techniques. However, the issues have many nonlinear constraints, which pose a number of problems such as time restrictions and high dimensionality. Recent trends tend to employ bio-inspired optimization algorithms, which are a potential method for handling difficult optimization problems, to address the issues associated with standard optimization algorithms. Focusing on these points, we investigate various bio-inspired algorithms for UAV path planning over the past decade. To the best of our knowledge, no survey on existing bio-inspired algorithms for UAV path planning has been reported in the literature. In this study, we investigate the prevailing bio-inspired algorithms extensively from the perspective of key features, working principles, advantages, and limitations. Subsequently, path planning algorithms are compared with each other in terms of their major features, characteristics, and performance factors. Furthermore, the challenges and future research trends in UAV path planning are summarized and discussed.

摘要

电子和软件的进步使无人机 (UAV) 和 UAV 辅助应用得以快速发展。尽管无人机的机动性允许网络灵活部署,但它在吞吐量、延迟、成本和能量方面带来了挑战。因此,路径规划是无人机通信的一个重要方面。仿生算法基于自然界生物进化的灵感和原理,实现了强大的生存技术。然而,这些问题具有许多非线性约束,这带来了一些问题,如时间限制和高维性。最近的趋势倾向于采用仿生优化算法,这是一种处理困难优化问题的潜在方法,以解决与标准优化算法相关的问题。基于这些观点,我们在过去十年中研究了各种用于无人机路径规划的仿生算法。据我们所知,目前还没有文献报道针对无人机路径规划的现有仿生算法的调查。在本研究中,我们从关键特征、工作原理、优点和局限性等方面广泛研究了流行的仿生算法。随后,根据主要特征、特性和性能因素对路径规划算法进行了相互比较。此外,总结并讨论了无人机路径规划中的挑战和未来研究趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86ff/10054886/1be985245ef6/sensors-23-03051-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验