Nanoscale Science and Engineering Center, University of California, Berkeley, CA, USA.
Faculty of Science and Faculty of Engineering, University of Hong Kong, Hong Kong, China.
Science. 2021 Apr 30;372(6541):501-503. doi: 10.1126/science.abb5144.
Biological ion channels rapidly and selectively gate ion transport through atomic-scale filters to maintain vital life functions. We report an atomic-scale ion transistor exhibiting ultrafast and highly selective ion transport controlled by electrical gating in graphene channels around 3 angstroms in height, made from a single flake of reduced graphene oxide. The ion diffusion coefficient reaches two orders of magnitude higher than the coefficient in bulk water. Atomic-scale ion transport shows a threshold behavior due to the critical energy barrier for hydrated ion insertion. Our in situ optical measurements suggest that ultrafast ion transport likely originates from highly dense packing of ions and their concerted movement inside the graphene channels.
生物离子通道通过原子级别的过滤器快速且选择性地控制离子运输,从而维持重要的生命功能。我们报告了一种原子级别的离子晶体管,其在高度约为 3 埃的石墨烯通道中通过电门控实现了超快和高度选择性的离子传输,该石墨烯通道由单个还原氧化石墨烯薄片制成。离子扩散系数比体相水中的系数高两个数量级。由于水合离子插入的临界能量势垒,原子级别的离子传输表现出阈值行为。我们的原位光学测量表明,超快离子传输可能源于石墨烯通道中离子的高密度堆积及其协同运动。