Suppr超能文献

一种随机隔室模型,用于模拟简单网络上的新冠疫情传播。

A stochastic compartmental model to simulate the Covid-19 epidemic spread on a simple network.

机构信息

Department of Physics and Astronomy (DIFA), University of Bologna, Italy; INFN, Division of Bologna, Italy; Interdepartmental Center Alma-Climate, University of Bologna, Italy.

Interdepartmental Center Alma-Climate, University of Bologna, Italy.

出版信息

Theor Biol Forum. 2020 Jan 1;113(1-2):31-46. doi: 10.19272/202011402004.

Abstract

The recent Covid-19 epidemic has pointed out the inadequacy of the plans applied by industrial countries to limit the epidemic spread and frailty of the global economy to cope with a pandemic. Many countries were forced to a global lockdown with a great socio-economic impact. In Italy, one of the problems was the complex mobility network structure of the Northern regions that made ineffective the attempts to isolate the initial hotspots. In the paper we study a simple model that simulates the epidemic spread on a community network that may exchange population according to a daily mobility rate. In each community the epidemic evolution is provided by a stochastic compartmental model whose parameters are tuned to reproduce the Covid-19 evolution observed in Italy before the global lockdown policies. We initially study the delay in the epidemic spread due to the finite local mobility by proposing a power law relation for the increasing of the infection peak time in each node and the network distance from the initial node where the epidemic starts. We consider two scenarios to study the effectiveness of local lockdown policies: the presence of two clusters weakly connected by the mobility or a homogeneous chain of communities that exchange the population at a fixed rate. In both cases we show the existence of a threshold effect, in a probabilistic sense, for the effectiveness of lockdown policies as a function of the delay time at which such policies are applied, or of the network distance from the outbreak node.

摘要

最近的 COVID-19 疫情暴露了工业国家应用的限制疫情传播计划的不足,以及全球经济应对大流行病的脆弱性。许多国家被迫实施全球封锁,对社会经济造成了重大影响。在意大利,问题之一是北部地区复杂的移动性网络结构,这使得隔离最初的热点地区的尝试无效。在本文中,我们研究了一个简单的模型,该模型模拟了在社区网络上的疫情传播,社区网络可以根据日常流动性率来交换人口。在每个社区中,疫情的演变由一个随机的隔室模型提供,其参数经过调整以复制意大利在全球封锁政策实施之前观察到的 COVID-19 演变。我们最初通过提出一个幂律关系来研究由于本地流动性有限而导致的疫情传播延迟,该关系表示每个节点的感染高峰期和疫情开始时的网络距离与初始节点的本地流动性之间的关系。我们考虑了两种情况来研究局部封锁政策的有效性:通过流动性连接较弱的两个集群,或按固定速率交换人口的同质社区链。在这两种情况下,我们都表明了封锁政策有效性存在一个概率意义上的阈值效应,该效应取决于封锁政策实施的延迟时间,或网络距离从爆发节点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验