Department of Ultrasound, Laboratory of Ultrasound Imaging and Drug, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Nanoscale. 2021 May 14;13(18):8623-8638. doi: 10.1039/d1nr01096d. Epub 2021 Apr 30.
Atherosclerotic thrombosis is the leading cause of most life-threatening cardiovascular diseases (CVDs), particularly as a result of rupture or erosion of vulnerable plaques. Rupture or erosion-prone plaques are quite different in cellular composition and immunopathology, requiring different treatment strategies. The current imaging technology cannot distinguish the types of vulnerable plaques, and thus empirical treatment is still applied to all without a tailored and precise treatment. Herein, we propose a novel strategy called "Multifunctional Pathology-mapping Theranostic Nanoplatform (MPmTN)" for the tailored treatment of plaques based on the pathological classification. MPmTNs are made up of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), containing contrast imaging materials FeO and perfluoropentane (PFP), and coated with specific plaque-targeted peptides PP1 and cyclic RGD. The PFP encapsulated inside the MPmTN can undergo a phase change from nanodroplets to gas microbubbles under therapeutic ultrasound (TUS) exposure. The acoustic and biological effects induced by TUS and disruption of microbubbles may further promote therapeutic effects. Hypothetically, MPmTN NPs can target the rupture-prone plaque via the binding of PP1 to class A scavenger receptors (SR-A) on macrophages, induce the apoptosis due to TUS exposure and thus reduce the chronic soakage of inflammatory cells. The MPmTN NPs can also target the erosion-prone plaque through the binding of cRGD to glycoprotein (GP) IIb/IIIa on activated platelets and promote platelet disaggregation under TUS exposure. Therefore, MPmTNs may work as a multifunctional pathology-mapping therapeutic agent. Our in vitro results show that the MPmTN with PP1 and cRGD peptides had a high binding affinity both for activated macrophages and blood clots. Under TUS exposure, the MPmTN could effectively induce macrophage apoptosis, destroy thrombus and exhibit good imaging properties for ultrasound (US) and MRI. In apoE mice, MPmTNs can selectively accumulate at the plaque site and reduce the T-weighted signal. The apoptosis of macrophages and disaggregation of activated platelets on the plaques were also confirmed in vivo. In summary, this study provides a potential strategy for a tailored treatment of vulnerable plaques based on their pathological nature and a multimodal imaging tool for the risk stratification and assessment of therapeutic efficacy.
动脉粥样硬化血栓形成是大多数危及生命的心血管疾病(CVDs)的主要原因,尤其是由于易损斑块的破裂或侵蚀。易破裂或易侵蚀的斑块在细胞组成和免疫病理学上有很大的不同,需要不同的治疗策略。目前的成像技术无法区分易损斑块的类型,因此仍然对所有斑块采用经验性治疗,而没有针对性和精确的治疗。在这里,我们提出了一种新的策略,称为“基于病理分类的多模态病理成像治疗纳米平台(MPmTN)”,用于针对斑块的靶向治疗。MPmTN 由聚乳酸-共-乙醇酸(PLGA)纳米颗粒(NPs)组成,其中包含对比成像材料 FeO 和全氟戊烷(PFP),并涂有特定的斑块靶向肽 PP1 和环状 RGD。在治疗性超声(TUS)暴露下,MPmTN 内包裹的 PFP 可以从纳米液滴相变为气体微泡。TUS 诱导的声和生物学效应以及微泡的破坏可能进一步促进治疗效果。假设,MPmTN NPs 可以通过 PP1 与巨噬细胞上的 A 类清道夫受体(SR-A)结合,靶向易破裂斑块,在 TUS 暴露下诱导细胞凋亡,从而减少炎症细胞的慢性浸润。MPmTN NPs 还可以通过 cRGD 与激活血小板上的糖蛋白(GP)IIb/IIIa 结合,靶向易侵蚀斑块,并在 TUS 暴露下促进血小板解聚。因此,MPmTN 可能作为一种多模态病理成像治疗剂。我们的体外研究结果表明,具有 PP1 和 cRGD 肽的 MPmTN 对激活的巨噬细胞和血栓均具有高结合亲和力。在 TUS 暴露下,MPmTN 可以有效诱导巨噬细胞凋亡,破坏血栓,并具有良好的超声(US)和 MRI 成像性能。在载脂蛋白 E 敲除(ApoE-/-)小鼠中,MPmTN 可以选择性地在斑块部位聚集,并降低 T 加权信号。体内也证实了斑块上巨噬细胞的凋亡和激活血小板的解聚。综上所述,本研究为基于易损斑块的病理性质进行靶向治疗提供了一种潜在策略,并为风险分层和治疗效果评估提供了一种多模态成像工具。