IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5590-5601. doi: 10.1109/TNNLS.2021.3071083. Epub 2022 Oct 5.
One of the pillar generative machine learning approaches in time series data study and analysis is the hidden Markov model (HMM). Early research focused on the speech recognition application of the model with later expansion into numerous fields, including video classification, action recognition, and text translation. The recently developed generalized Dirichlet HMMs have proven efficient in proportional sequential data modeling. As such, we focus on investigating a maximum a posteriori (MAP) framework for the inference of its parameters. The proposed approach differs from the widely deployed Baum-Welch through the placement of priors that regularizes the estimation process. A feature selection paradigm is also integrated simultaneously in the algorithm. For validation, we apply our proposed approach in the classification of dynamic textures and the recognition of infrared actions.
时间序列数据研究和分析中的主要生成式机器学习方法之一是隐马尔可夫模型(HMM)。早期的研究集中在该模型在语音识别方面的应用,后来扩展到包括视频分类、动作识别和文本翻译在内的众多领域。最近开发的广义狄利克雷隐马尔可夫模型在比例顺序数据建模方面表现出了高效性。因此,我们专注于研究其参数推断的最大后验(MAP)框架。与广泛应用的 Baum-Welch 算法不同,我们的方法通过放置正则化估计过程的先验来实现。同时,该算法还集成了特征选择范例。为了验证,我们将提出的方法应用于动态纹理分类和红外动作识别中。