Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel.
FEMS Microbiol Rev. 2021 Nov 23;45(6). doi: 10.1093/femsre/fuab022.
Genetic variation in holobionts (host and microbiome), occurring in both host and microbiome genomes, can be observed from two perspectives: observable variations and processes that bring about the variation. Observable includes the enormous genetic diversity of prokaryotes, which gave rise to eukaryotes. Holobionts then evolved a rich microbiome with a stable core containing essential genes, less so common taxa and a more diverse non-core, enabling considerable genetic variation. Thus, the human gut microbiome, for example, contains 1000 times more unique genes than are present in the human genome. Microbial-driven genetic variation processes in holobionts include: (1) acquisition of novel microbes from the environment, (2) amplification/reduction of certain microbes in the microbiome, (3) horizontal gene transfer between microbes and between microbes and host and (4) mutation, which plays a role in optimizing interactions between microbiota and between microbiota and host. We suggest that invertebrates and plants, where microbes can live intracellularly, have a greater chance of genetic exchange between microbiota and host, a greater chance of vertical transmission and a greater effect of microbiome on evolution than vertebrates. However, even in vertebrates the microbiome can aid in environmental fluctuations by amplification/reduction and by acquisition of novel microorganisms.
从两个角度可以观察到后生生物(宿主和微生物组)中的遗传变异,即发生在宿主和微生物组基因组中的遗传变异:可观察的变异和导致变异的过程。可观察的变异包括原核生物的巨大遗传多样性,这些多样性促成了真核生物的产生。后生生物随后进化出了一个丰富的微生物组,其中稳定的核心含有必需基因,较少的常见分类群和更多样化的非核心,从而实现了相当大的遗传变异。例如,人类肠道微生物组包含的独特基因是人类基因组的 1000 倍以上。后生生物中的微生物驱动的遗传变异过程包括:(1)从环境中获得新的微生物;(2)微生物组中某些微生物的扩增/减少;(3)微生物之间以及微生物与宿主之间的水平基因转移;(4)突变,它在优化微生物组与宿主之间的相互作用方面发挥作用。我们认为,在可以在细胞内生活的无脊椎动物和植物中,微生物组与宿主之间发生遗传交换、垂直传播以及微生物组对进化的影响的可能性更大。然而,即使在脊椎动物中,微生物组也可以通过扩增/减少和获得新的微生物来帮助适应环境波动。