San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
Department of Surgery, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
J Mech Behav Biomed Mater. 2021 Jul;119:104431. doi: 10.1016/j.jmbbm.2021.104431. Epub 2021 Mar 27.
Left ventricular (LV) diastolic dysfunction (DD) is common after myocardial infarction (MI). Whereas current clinical assessment of DD relies on indirect markers including LV filling, finite element (FE) -based computational modeling directly measures regional diastolic stiffness. We hypothesized that an inverse deformation gradient (DG) method calculation of diastolic strain (IDGDS) allows the FE model-based calculation of regional diastolic stiffness (material parameters; MP) in post-MI patients with DD.
Cardiac magnetic resonance (CMR) with tags (CSPAMM) and late gadolinium enhancement (LGE) was performed in 10 patients with post-MI DD and 10 healthy volunteers. The 3-dimensional (3D) LV DG from end-diastole (ED) to early diastolic filling (EDF; DG) was calculated from CSPAMM. Diastolic strain was calculated from DG by inverting the DG. FE models were created with MI and non-MI (remote; RM) regions determined by LGE. Guccione MPs C, and exponential fiber, b, and transverse, b , terms were optimized with IDGDS strain.
3D circumferential and longitudinal diastolic strain (E;E) calculated using IDGDS in CSPAMM obtained in volunteers and MI patients were [Formula: see text] = 0.27 ± 0.01, [Formula: see text] = 0.24 ± 0.03 and [Formula: see text] = 0.21 ± 0.02, and [Formula: see text] = 0.15 ± 0.02, respectively. MPs in the volunteer group were C = 0.013 [0.001, 0.235] kPa, [Formula: see text] = 20.280 ± 4.994, and [Formula: see text] = 7.460 ± 2.171 and C = 0.0105 [0.010, 0.011] kPa, [Formula: see text] = 50.786 ± 13.511 (p = 0.0846), and [Formula: see text] = 17.355 ± 2.743 (p = 0.0208) in the remote myocardium of post-MI patients.
Diastolic strain, calculated from CSPAMM with IDGDS, enables calculation of FE model-based regional diastolic material parameters. Transverse stiffness of the remote myocardium, , may be a valuable new metric for determination of DD in patients after MI.
左心室(LV)舒张功能障碍(DD)在心肌梗死后很常见。虽然目前对 DD 的临床评估依赖于间接标志物,包括 LV 充盈,但有限元(FE)为基础的计算模型直接测量局部舒张硬度。我们假设,通过反变形梯度(DG)方法计算舒张应变(IDGDS)可以在 DD 患者中基于 FE 模型计算局部舒张硬度(材料参数;MP)。
对 10 例心肌梗死后 DD 患者和 10 例健康志愿者进行心脏磁共振(CMR)与标记物(CSPAMM)和晚期钆增强(LGE)检查。从 CSPAMM 计算舒张末期(ED)至早期舒张充盈(EDF;DG)的 3 维(3D)LV DG。从 DG 反演计算舒张应变。通过 IDGDS 应变优化 MI 和非 MI(远程;RM)区域由 LGE 确定的 FE 模型。使用 Guccione MPs C、指数纤维和 b 以及横向,b 和 b 项进行优化。
志愿者和 MI 患者在 CSPAMM 中使用 IDGDS 计算的 3D 圆周和纵向舒张应变(E;E)为 [Formula: see text] = 0.27 ± 0.01, [Formula: see text] = 0.24 ± 0.03 和 [Formula: see text] = 0.21 ± 0.02,和 [Formula: see text] = 0.15 ± 0.02,分别。志愿者组的 MPs 为 C = 0.013 [0.001, 0.235] kPa,[Formula: see text] = 20.280 ± 4.994,[Formula: see text] = 7.460 ± 2.171 和 C = 0.0105 [0.010, 0.011] kPa,[Formula: see text] = 50.786 ± 13.511(p = 0.0846),和 [Formula: see text] = 17.355 ± 2.743(p = 0.0208)在 MI 后患者的远程心肌中。
使用 IDGDS 从 CSPAMM 计算的舒张应变可以计算基于 FE 模型的局部舒张材料参数。远程心肌的横向刚度,b,可能是确定 MI 后患者 DD 的一个有价值的新指标。