Suppr超能文献

贝叶斯优化在左心室心脏力学模型中的高效参数推断。

Bayesian optimisation for efficient parameter inference in a cardiac mechanics model of the left ventricle.

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.

出版信息

Int J Numer Method Biomed Eng. 2022 May;38(5):e3593. doi: 10.1002/cnm.3593. Epub 2022 Apr 7.

Abstract

We consider parameter inference in cardio-mechanic models of the left ventricle, in particular the one based on the Holtzapfel-Ogden (HO) constitutive law, using clinical in vivo data. The equations underlying these models do not admit closed form solutions and hence need to be solved numerically. These numerical procedures are computationally expensive making computational run times associated with numerical optimisation or sampling excessive for the uptake of the models in the clinical practice. To address this issue, we adopt the framework of Bayesian optimisation (BO), which is an efficient statistical technique of global optimisation. BO seeks the optimum of an unknown black-box function by sequentially training a statistical surrogate-model and using it to select the next query point by leveraging the associated exploration-exploitation trade-off. To guarantee that the estimates based on the in vivo data are realistic also for high-pressures, unobservable in vivo, we include a penalty term based on a previously published empirical law developed using ex vivo data. Two case studies based on real data demonstrate that the proposed BO procedure outperforms the state-of-the-art inference algorithm for the HO constitutive law.

摘要

我们考虑使用临床体内数据对左心室的心脏力学模型(尤其是基于霍茨阿普菲尔-奥格登(HO)本构律的模型)进行参数推断。这些模型所依据的方程没有闭式解,因此需要数值求解。这些数值程序计算成本很高,使得与数值优化或采样相关的计算运行时间对于模型在临床实践中的应用来说过于冗长。为了解决这个问题,我们采用了贝叶斯优化(BO)的框架,这是一种高效的全局优化统计技术。BO 通过顺序训练统计代理模型并利用其相关的探索-利用权衡来选择下一个查询点,从而寻求未知黑盒函数的最优值。为了确保基于体内数据的估计值在高压力下也是现实的,而这些高压力是体内无法观察到的,我们纳入了一个基于先前使用离体数据开发的经验定律的惩罚项。基于真实数据的两个案例研究表明,所提出的 BO 程序优于 HO 本构律的最新推断算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0365/9285944/e2e749e5daeb/CNM-38-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验