Suppr超能文献

基于计算机断层扫描(CT)的放射组学构建的非小细胞肺癌预后预测模型的现状与质量:一项系统综述及放射组学质量评分2.0评估

Current status and quality of prognosis prediction models of non-small cell lung cancer constructed using computed tomography (CT)-based radiomics: a systematic review and radiomics quality score 2.0 assessment.

作者信息

Jia Xiaoteng, Wang Yuhang, Zhang Han, Sun Daqiang

机构信息

Clinical School of Thoracic, Tianjin Medical University, Tianjin, China.

Department of Thoracic Surgery, Tianjin Chest Hospital of Tianjin University, Tianjin, China.

出版信息

Quant Imaging Med Surg. 2024 Sep 1;14(9):6978-6989. doi: 10.21037/qims-24-22. Epub 2024 Aug 19.

Abstract

BACKGROUND

Radiomics extracts specific quantitative data from medical images and explores the characteristics of tumors by analyzing these representations and making predictions. The purpose of this paper is to review computed tomography (CT)-based radiomics articles related to prognostic outcomes in non-small cell lung cancer (NSCLC), assess their scientificity and quality by the latest radiomics quality score (RQS) 2.0 scoring criteria, and provide references for subsequent related studies.

METHODS

CT-based radiomics studies on NSCLC prognosis published from 1 November 2012 to 30 November 2022 in English were screened through the databases of the Cochrane Library, Embase, and PubMed. By excluding criteria such as non-original studies, small sample sizes studies, positron emission tomography (PET)/CT only, and methodological studies only, 17 studies in English were included. The RQS proposed in 2017 is a quality evaluation index specific to radiomics following the PRISMA guidelines, and the latest update of RQS 2.0 has improved the scientificity and completeness of the score. Each checkpoint either belongs to handcrafted radiomics (HCR), deep learning, or both.

RESULTS

The 17 included studies covered most treatments for NSCLC, including radiotherapy, chemotherapy, surgery, radiofrequency ablation, immunotherapy, and targeted therapy, and predicted outcomes such as overall survival (OS), progression-free survival (PFS), distant metastases, and disease-free survival (DFS). The median score rate for the included studies was 28%, with a range of 12% to 44%. The quality of studies in HCR is not high, and only 4 studies have been validated with independent cohorts.

CONCLUSIONS

The value of radiomics studies needs to be increased, such that clinical application will be possible, and the field of radiomics still has much room for growth. To make prediction models more reliable and stable in forecasting the prognosis of NSCLC and advancing the individualized treatment of NSCLC patients, more clinicians must participate in their development and clinical testing.

摘要

背景

放射组学从医学图像中提取特定的定量数据,并通过分析这些特征进行预测,从而探索肿瘤的特性。本文旨在综述基于计算机断层扫描(CT)的、与非小细胞肺癌(NSCLC)预后相关的放射组学文章,依据最新的放射组学质量评分(RQS)2.0评分标准评估其科学性和质量,为后续相关研究提供参考。

方法

通过Cochrane图书馆、Embase和PubMed数据库筛选2012年11月1日至2022年11月30日发表的、基于CT的关于NSCLC预后的放射组学英文研究。通过排除非原创研究、小样本量研究、仅正电子发射断层扫描(PET)/CT研究以及仅方法学研究等标准,纳入17篇英文研究。2017年提出的RQS是遵循PRISMA指南的放射组学特定质量评估指标,RQS 2.0的最新更新提高了评分的科学性和完整性。每个检查点要么属于手工放射组学(HCR)、深度学习,要么两者兼具。

结果

纳入的17项研究涵盖了NSCLC的大多数治疗方法,包括放疗、化疗、手术、射频消融、免疫治疗和靶向治疗,并预测了总生存期(OS)、无进展生存期(PFS)、远处转移和无病生存期(DFS)等结果。纳入研究的中位评分率为28%,范围为12%至44%。HCR研究的质量不高,只有4项研究在独立队列中得到验证。

结论

放射组学研究的价值有待提高,以便能够应用于临床,放射组学领域仍有很大的发展空间。为使预测模型在预测NSCLC预后和推进NSCLC患者个体化治疗方面更可靠、稳定,更多临床医生必须参与其开发和临床测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a2f/11400702/3f661251e779/qims-14-09-6978-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验