Suppr超能文献

基于CT图像的深度学习影像组学在非小细胞肺癌患者生存预测中的应用

Deep Learning Radiomics for Survival Prediction in Non-Small-Cell Lung Cancer Patients from CT Images.

作者信息

Le Viet Huan, Minh Tran Nguyen Tuan, Kha Quang Hien, Le Nguyen Quoc Khanh

机构信息

Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City, 65000, Vietnam.

International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.

出版信息

J Med Syst. 2025 Feb 11;49(1):22. doi: 10.1007/s10916-025-02156-5.

Abstract

This study aims to apply a multi-modal approach of the deep learning method for survival prediction in patients with non-small-cell lung cancer (NSCLC) using CT-based radiomics. We utilized two public data sets from the Cancer Imaging Archive (TCIA) comprising NSCLC patients, 420 patients and 516 patients for Lung 1 training and Lung 2 testing, respectively. A 3D convolutional neural network (CNN) survival was applied to extract 256 deep-radiomics features for each patient from a CT scan. Feature selection steps are used to choose the radiomics signatures highly associated with overall survival. Deep-radiomics and traditional-radiomics signatures, and clinical parameters were fed into the DeepSurv neural network. The C-index was used to evaluate the model's effectiveness. In the Lung 1 training set, the model combining traditional-radiomics and deep-radiomics performs better than the single parameter models, and models that combine all three markers (traditional-radiomics, deep-radiomics, and clinical) are most effective with C-index 0.641 for Cox proportional hazards (Cox-PH) and 0.733 for DeepSurv approach. In the Lung 2 testing set, the model combining traditional-radiomics, deep-radiomics, and clinical obtained a C-index of 0.746 for Cox-PH and 0.751 for DeepSurv approach. The DeepSurv method improves the model's prediction compared to the Cox-PH, and models that combine all three parameters with the DeepSurv have the highest efficiency in training and testing data sets (C-index: 0.733 and 0.751, respectively). DeepSurv CT-based deep-radiomics method outperformed Cox-PH in survival prediction of patients with NSCLC patients. Models' efficiency is increased when combining multi parameters.

摘要

本研究旨在应用深度学习方法的多模态方法,利用基于CT的放射组学对非小细胞肺癌(NSCLC)患者进行生存预测。我们使用了来自癌症影像存档(TCIA)的两个公共数据集,分别包含420例患者用于Lung 1训练和516例患者用于Lung 2测试的NSCLC患者。应用3D卷积神经网络(CNN)生存模型从CT扫描中为每位患者提取256个深度放射组学特征。特征选择步骤用于选择与总生存高度相关的放射组学特征。将深度放射组学和传统放射组学特征以及临床参数输入到DeepSurv神经网络中。使用C指数评估模型的有效性。在Lung 1训练集中,结合传统放射组学和深度放射组学的模型比单参数模型表现更好,并且结合所有三个标志物(传统放射组学、深度放射组学和临床)的模型最有效,Cox比例风险(Cox-PH)的C指数为0.641,DeepSurv方法的C指数为0.733。在Lung 2测试集中,结合传统放射组学、深度放射组学和临床的模型Cox-PH的C指数为0.746,DeepSurv方法的C指数为0.751。与Cox-PH相比,DeepSurv方法提高了模型的预测能力,并且在训练和测试数据集中结合所有三个参数与DeepSurv的模型效率最高(C指数分别为0.733和0.751)。基于DeepSurv CT的深度放射组学方法在NSCLC患者的生存预测中优于Cox-PH。结合多参数时模型的效率会提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验