Suppr超能文献

相似文献

1
Computational approaches to fMRI analysis.
Nat Neurosci. 2017 Feb 23;20(3):304-313. doi: 10.1038/nn.4499.
2
EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods.
J Integr Neurosci. 2012 Sep;11(3):313-37. doi: 10.1142/S0219635212500203. Epub 2012 Sep 17.
3
The role of fMRI in cognitive neuroscience: where do we stand?
Curr Opin Neurobiol. 2008 Apr;18(2):223-7. doi: 10.1016/j.conb.2008.07.006. Epub 2008 Aug 7.
4
Spatially regularized machine learning for task and resting-state fMRI.
J Neurosci Methods. 2016 Jan 15;257:214-28. doi: 10.1016/j.jneumeth.2015.10.001. Epub 2015 Oct 16.
5
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.
J Neurophysiol. 2015 Aug;114(2):768-80. doi: 10.1152/jn.00332.2014. Epub 2015 May 13.
6
Prediction and interpretation of distributed neural activity with sparse models.
Neuroimage. 2009 Jan 1;44(1):112-22. doi: 10.1016/j.neuroimage.2008.08.020. Epub 2008 Aug 27.
7
Multivariate pattern analysis in functional brain imaging.
Sheng Li Xue Bao. 2011 Oct 25;63(5):472-6.
8
Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
Acad Radiol. 2005 Jan;12(1):25-36. doi: 10.1016/j.acra.2004.09.012.
9
Model-based fMRI and its application to reward learning and decision making.
Ann N Y Acad Sci. 2007 May;1104:35-53. doi: 10.1196/annals.1390.022. Epub 2007 Apr 7.
10
Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.
Neuroimage. 2012 Apr 15;60(3):1746-58. doi: 10.1016/j.neuroimage.2012.01.129. Epub 2012 Feb 8.

引用本文的文献

1
Latent variable sequence identification for cognitive models with neural network estimators.
Behav Res Methods. 2025 Aug 28;57(10):272. doi: 10.3758/s13428-025-02794-0.
2
Multi-voxel pattern analysis for developmental cognitive neuroscientists.
Dev Cogn Neurosci. 2025 Mar 25;73:101555. doi: 10.1016/j.dcn.2025.101555.
3
Interfacing with the Brain: How Nanotechnology Can Contribute.
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
4
Decoding Visual Spatial Attention Control.
eNeuro. 2025 Mar 3;12(3). doi: 10.1523/ENEURO.0512-24.2025. Print 2025 Mar.
5
The medial and lateral orbitofrontal cortex jointly represent the cognitive map of task space.
Commun Biol. 2025 Feb 3;8(1):163. doi: 10.1038/s42003-025-07588-w.
6
A data integration method for new advances in development cognitive neuroscience.
Dev Cogn Neurosci. 2024 Dec;70:101475. doi: 10.1016/j.dcn.2024.101475. Epub 2024 Nov 9.
7
A double-blind trial of decoded neurofeedback intervention for specific phobias.
Psychiatry Clin Neurosci. 2024 Nov;78(11):678-686. doi: 10.1111/pcn.13726. Epub 2024 Sep 2.
8
Sex differences in distributed error-related neural activation in problem-drinking young adults.
Drug Alcohol Depend. 2024 Oct 1;263:112421. doi: 10.1016/j.drugalcdep.2024.112421. Epub 2024 Aug 22.
9
A double-blind trial of decoded neurofeedback intervention for specific phobias.
medRxiv. 2024 Aug 1:2023.04.25.23289107. doi: 10.1101/2023.04.25.23289107.
10
Neural variability fingerprint predicts individuals' information security violation intentions.
Fundam Res. 2021 Oct 29;2(2):303-310. doi: 10.1016/j.fmre.2021.10.002. eCollection 2022 Mar.

本文引用的文献

1
Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.
Annu Rev Vis Sci. 2015 Nov 24;1:417-446. doi: 10.1146/annurev-vision-082114-035447.
3
Shared memories reveal shared structure in neural activity across individuals.
Nat Neurosci. 2017 Jan;20(1):115-125. doi: 10.1038/nn.4450. Epub 2016 Dec 5.
4
Inferring brain-computational mechanisms with models of activity measurements.
Philos Trans R Soc Lond B Biol Sci. 2016 Oct 5;371(1705). doi: 10.1098/rstb.2016.0278.
5
A Probability Distribution over Latent Causes, in the Orbitofrontal Cortex.
J Neurosci. 2016 Jul 27;36(30):7817-28. doi: 10.1523/JNEUROSCI.0659-16.2016.
6
Dynamic reconfiguration of the default mode network during narrative comprehension.
Nat Commun. 2016 Jul 18;7:12141. doi: 10.1038/ncomms12141.
8
Two's company, three (or more) is a simplex : Algebraic-topological tools for understanding higher-order structure in neural data.
J Comput Neurosci. 2016 Aug;41(1):1-14. doi: 10.1007/s10827-016-0608-6. Epub 2016 Jun 11.
10
Building a Science of Individual Differences from fMRI.
Trends Cogn Sci. 2016 Jun;20(6):425-443. doi: 10.1016/j.tics.2016.03.014. Epub 2016 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验