Suppr超能文献

将内质网上的出口位点模式去折叠作为淬火分相过程。

Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process.

机构信息

Experimental Physics I, University of Bayreuth, Bayreuth, Germany.

Experimental Physics I, University of Bayreuth, Bayreuth, Germany.

出版信息

Biophys J. 2021 Jun 15;120(12):2532-2542. doi: 10.1016/j.bpj.2021.04.023. Epub 2021 Apr 29.

Abstract

The endoplasmic reticulum (ER) is a vital organelle in mammalian cells with a complex morphology. Consisting of sheet-like cisternae in the cell center, the peripheral ER forms a vast tubular network on which a dispersed pattern of a few hundred specialized domains (ER exit sites (ERESs)) is maintained. Molecular details of cargo sorting and vesicle formation at individual ERESs, fueling the early secretory pathway, have been studied in some detail. The emergence of spatially extended ERES patterns, however, has remained poorly understood. Here, we show that these patterns are determined by the underlying ER morphology, suggesting ERESs to emerge from a demixing process that is quenched by the ER network topology. In particular, we observed fewer but larger ERESs when transforming the ER network to more sheet-like morphologies. In contrast, little to no changes with respect to native ERES patterns were observed when fragmenting the ER, indicating that hampering the diffusion-mediated coarse graining of domains is key for native ERES patterns. Model simulations support the notion of effective diffusion barriers impeding the coarse graining and maturation of ERES patterns. We speculate that tuning a simple demixing mechanism by the ER topology allows for a robust but flexible adaption of ERES patterns, ensuring a properly working early secretory pathway in a variety of conditions.

摘要

内质网(ER)是哺乳动物细胞中一种具有复杂形态的重要细胞器。内质网的中心由片状的潴泡组成,外周 ER 形成一个巨大的管状网络,其上维持着几百个分散的特殊结构域(内质网出口位点(ERES))。在个别 ERES 处进行货物分拣和囊泡形成的分子细节已经进行了一些详细的研究,为早期分泌途径提供燃料。然而,空间扩展的 ERES 模式的出现仍然知之甚少。在这里,我们表明这些模式是由基础 ER 形态决定的,这表明 ERES 是从一个分相过程中出现的,该过程被 ER 网络拓扑结构所猝灭。具体来说,当将 ER 网络转化为更片状的形态时,我们观察到的 ERES 更少但更大。相比之下,当 ER 碎片化时,与原生 ERES 模式几乎没有变化,这表明阻碍扩散介导的结构域粗粒化对于原生 ERES 模式是关键的。模型模拟支持了有效扩散障碍阻碍 ERES 模式粗粒化和成熟的概念。我们推测,通过 ER 拓扑调整简单的分相机制,可以实现 ERES 模式的稳健但灵活的适应,确保在各种条件下早期分泌途径的正常运作。

相似文献

1
Unscrambling exit site patterns on the endoplasmic reticulum as a quenched demixing process.
Biophys J. 2021 Jun 15;120(12):2532-2542. doi: 10.1016/j.bpj.2021.04.023. Epub 2021 Apr 29.
2
Tango1 spatially organizes ER exit sites to control ER export.
J Cell Biol. 2017 Apr 3;216(4):1035-1049. doi: 10.1083/jcb.201611088. Epub 2017 Mar 9.
5
High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae.
J Cell Sci. 2012 Jul 15;125(Pt 14):3412-20. doi: 10.1242/jcs.100065. Epub 2012 Mar 30.
6
h-ERES-y in ER-Golgi transport.
Dev Cell. 2004 Jul;7(1):6-8. doi: 10.1016/j.devcel.2004.06.013.
7
8
Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells.
Plant Cell. 2004 Jul;16(7):1753-71. doi: 10.1105/tpc.022673. Epub 2004 Jun 18.
9
ER arrival sites associate with ER exit sites to create bidirectional transport portals.
J Cell Biol. 2020 Apr 6;219(4). doi: 10.1083/jcb.201902114.
10
Vesicle-mediated export from the ER: COPII coat function and regulation.
Biochim Biophys Acta. 2013 Nov;1833(11):2464-72. doi: 10.1016/j.bbamcr.2013.02.003. Epub 2013 Feb 15.

引用本文的文献

1
ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes.
Nat Commun. 2025 Mar 21;16(1):2814. doi: 10.1038/s41467-025-58142-5.
2
Endoplasmic Reticulum Exit Sites scale with somato-dendritic size in neurons.
Mol Biol Cell. 2023 Oct 1;34(11):ar106. doi: 10.1091/mbc.E23-03-0090. Epub 2023 Aug 9.
3
Endoplasmic reticulum network heterogeneity guides diffusive transport and kinetics.
Biophys J. 2023 Aug 8;122(15):3191-3205. doi: 10.1016/j.bpj.2023.06.022. Epub 2023 Jul 3.

本文引用的文献

1
Tunnels for Protein Export from the Endoplasmic Reticulum.
Annu Rev Biochem. 2021 Jun 20;90:605-630. doi: 10.1146/annurev-biochem-080120-022017. Epub 2021 Jan 27.
2
A physical mechanism of TANGO1-mediated bulky cargo export.
Elife. 2020 Nov 10;9:e59426. doi: 10.7554/eLife.59426.
3
Mitotic ER Exit Site Disassembly and Reassembly Are Regulated by the Phosphorylation Status of TANGO1.
Dev Cell. 2020 Oct 26;55(2):237-250.e5. doi: 10.1016/j.devcel.2020.07.017. Epub 2020 Aug 19.
4
TANGO1 membrane helices create a lipid diffusion barrier at curved membranes.
Elife. 2020 May 26;9:e57822. doi: 10.7554/eLife.57822.
5
ER membranes exhibit phase behavior at sites of organelle contact.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7225-7235. doi: 10.1073/pnas.1910854117. Epub 2020 Mar 16.
6
Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles.
Science. 2020 Jan 31;367(6477). doi: 10.1126/science.aay7108.
7
ilastik: interactive machine learning for (bio)image analysis.
Nat Methods. 2019 Dec;16(12):1226-1232. doi: 10.1038/s41592-019-0582-9. Epub 2019 Sep 30.
8
Self-Organization in Pattern Formation.
Dev Cell. 2019 Jun 3;49(5):659-677. doi: 10.1016/j.devcel.2019.05.019.
9
Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales.
Cell. 2018 Nov 15;175(5):1430-1442.e17. doi: 10.1016/j.cell.2018.09.057. Epub 2018 Oct 25.
10
Diffusion of Exit Sites on the Endoplasmic Reticulum: A Random Walk on a Shivering Backbone.
Biophys J. 2018 Oct 16;115(8):1552-1560. doi: 10.1016/j.bpj.2018.09.007. Epub 2018 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验