Suppr超能文献

ChrNet:一种用于预测免疫细胞类型的基于染色体的可重新训练的一维卷积神经网络。

ChrNet: A re-trainable chromosome-based 1D convolutional neural network for predicting immune cell types.

作者信息

Jia Shuo, Hu Pingzhao

机构信息

Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.

Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada.

出版信息

Genomics. 2021 Jul;113(4):2023-2031. doi: 10.1016/j.ygeno.2021.04.037. Epub 2021 Apr 28.

Abstract

Cells from our immune system detect and kill pathogens to protect our body against various diseases. However, current methods for determining cell types have some major limitations, such as being time-consuming and with low throughput, etc. Immune cells that are associated with cancer tissues play a critical role in revealing tumor development. Identifying the immune composition within tumor microenvironment in a timely manner will be helpful in improving clinical prognosis and therapeutic management for cancer. Although unsupervised clustering approaches have been prevailing to process scRNA-seq datasets, their results vary among studies with different input parameters and sizes, and the identification of the cell types of the clusters is still very challenging. Genes in human genome can be aligned to chromosomes with specific orders. Hence, we hypothesize incorporating this information into our learning model will potentially improve the cell type classification performance. In order to utilize gene positional information, we introduced ChrNet, a novel chromosome-specific re-trainable supervised learning method based on one-dimensional convolutional neural network (1D-CNN). By benchmarking with several models, our model shows superior performance in immune cell type profiling with larger than 90% accuracy. It is expected that this approach can become a reference architecture for other cell type classification methods. Our ChrNet tool is available online at: https://github.com/Krisloveless/ChrNet.

摘要

我们免疫系统中的细胞能够检测并杀死病原体,从而保护我们的身体免受各种疾病侵害。然而,目前确定细胞类型的方法存在一些重大局限性,比如耗时且通量低等。与癌组织相关的免疫细胞在揭示肿瘤发展过程中起着关键作用。及时识别肿瘤微环境中的免疫组成将有助于改善癌症的临床预后和治疗管理。尽管无监督聚类方法在处理单细胞RNA测序(scRNA-seq)数据集方面一直占据主导地位,但不同研究中,由于输入参数和数据集大小不同,其结果也有所差异,而且对聚类细胞类型的识别仍然极具挑战性。人类基因组中的基因可以按特定顺序与染色体对齐。因此,我们推测将此信息纳入我们的学习模型可能会提高细胞类型分类性能。为了利用基因位置信息,我们引入了ChrNet,这是一种基于一维卷积神经网络(1D-CNN)的新型特定于染色体的可重新训练的监督学习方法。通过与多个模型进行基准测试,我们的模型在免疫细胞类型分析中表现出卓越性能,准确率超过90%。预计这种方法能够成为其他细胞类型分类方法的参考架构。我们的ChrNet工具可在以下网址在线获取:https://github.com/Krisloveless/ChrNet。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验