Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France.
Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne F - 42023 France; University Hospital of Saint-Étienne, Department of Cardiovascular Surgery, Saint-Étienne cedex, France.
Comput Methods Programs Biomed. 2021 Jun;205:106107. doi: 10.1016/j.cmpb.2021.106107. Epub 2021 Apr 15.
The prevention of ascending thoracic aortic aneurysms (ATAAs), which affect thousands of persons every year worldwide, remains a major issue. ATAAs may be caused by anything that weakens the aortic wall. Altered hemodynamics, which concerns a majority of patients with bicuspid aortic valves, has been shown to be related to such weakening and to contribute to ATAA development and progression. However the underlying mechanisms remain unclear and computational modeling in this field could help significantly to elucidate how hemodynamics and mechanobiology interact in ATAAs.
Accordingly, we propose a numerical framework combining computational fluid dynamics and 4D flow magnetic resonance imaging (MRI) coupled with finite element (FE) analyses to simulate growth and remodeling (G&R) occurring in patient-specific aortas in relation with altered hemodynamics. The geometries and the blood velocities obtained from 4D flow MRI are used as boundary conditions for CFD simulations. CFD simulations provide an estimation of the wall shear stress (WSS) and relative residence time (RRT) distribution across the luminal surface of the wall. An initial insult is then applied to the FE model of the aortic wall, assuming that the magnitude of the insult correlates spatially with the normalized RRT distribution obtained from CFD simulations. G&R simulations are then performed. The material behavior of each Gauss point in these FE models is evolved continuously to compensate for the deviation of the actual wall stress distribution from the homeostatic state after the initial insult. The whole approach is illustrated on two healthy and two diseased subjects. The G&R parameters are calibrated against previously established statistical models of ATAA growth rates.
Among the variety of results provided by G&R simulations, the analysis focused especially on the evolution of the wall stiffness, which was shown to be a major risk factor for ATAAs. It was shown that the G&R parameters, such as for instance the rate of collagen production or cell mechanosensitivity, play a critical role in ATAA progression and remodeling.
These preliminary findings show that patient-specific computational modeling coupling hemodynamics with mechanobiology is a promising approach to explore aneurysm progression.
每年全球有数千人受到升主动脉瘤(ATAAs)的影响,但其预防仍然是一个主要问题。ATAAs 可能由任何削弱主动脉壁的因素引起。已经表明,大多数二叶式主动脉瓣患者的血液动力学改变与这种弱化有关,并导致 ATAA 的发展和进展。然而,潜在机制尚不清楚,该领域的计算建模可以极大地帮助阐明血液动力学和机械生物学如何相互作用于 ATAAs。
因此,我们提出了一个数值框架,将计算流体动力学(CFD)和 4D 血流磁共振成像(MRI)与有限元(FE)分析相结合,以模拟与血液动力学改变相关的患者特定主动脉中的生长和重塑(G&R)。从 4D 流 MRI 获得的几何形状和血流速度被用作 CFD 模拟的边界条件。CFD 模拟提供了壁面剪切应力(WSS)和相对停留时间(RRT)分布在壁的腔表面上的估计。然后,对主动脉壁的 FE 模型施加初始损伤,假设损伤的幅度与从 CFD 模拟获得的归一化 RRT 分布空间相关。然后进行 G&R 模拟。FE 模型中的每个高斯点的材料行为连续演化,以补偿初始损伤后实际壁应力分布与平衡状态的偏差。该方法在两个健康和两个患病个体上进行了说明。G&R 参数是根据先前建立的 ATAA 生长速率的统计模型进行校准的。
在 G&R 模拟提供的各种结果中,特别分析了壁刚度的演变,这是 ATAAs 的主要危险因素。结果表明,G&R 参数(例如胶原蛋白产生率或细胞机械敏感性)在 ATAA 进展和重塑中起着关键作用。
这些初步发现表明,将血液动力学与机械生物学相结合的患者特定计算建模是探索动脉瘤进展的一种很有前途的方法。