Suppr超能文献

使用均匀化约束混合模型对升主动脉动脉瘤生长和重塑进行个体化预测。

Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.

机构信息

Mines Saint-Étienne, INSERM, U 1059 Sainbiose, Centre CIS, University of Lyon, Université Jean Monnet, 42023, Saint-Étienne, France.

出版信息

Biomech Model Mechanobiol. 2019 Dec;18(6):1895-1913. doi: 10.1007/s10237-019-01184-8. Epub 2019 Jun 14.

Abstract

In its permanent quest of mechanobiological homeostasis, our vasculature significantly adapts across multiple length and timescales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R) has significantly improved our insights into the mechanobiological processes of diseases such as hypertension or aneurysms. However, patient-specific computational modeling of ascending thoracic aortic aneurysm (ATAA) evolution, based on finite element models (FEM), remains a challenging scientific problem with rare contributions, despite the major significance of this topic of research. Challenges are related to complex boundary conditions and geometries combined with layer-specific G&R responses. To address these challenges, in the current paper, we employed the constrained mixture model (CMM) to model the arterial wall as a mixture of different constituents such as elastin, collagen fiber families and smooth muscle cells. Implemented in Abaqus as a UMAT, this first patient-specific CMM-based FEM of G&R in human ATAA was first validated for canonical problems such as single-layer thick-wall cylindrical and bilayer thick-wall toric arterial geometries. Then it was used to predict ATAA evolution for a patient-specific aortic geometry, showing that the typical shape of an ATAA can be simply produced by elastin proteolysis localized in regions of deranged hemodymanics. The results indicate a transfer of stress to the adventitia by elastin loss and continuous adaptation of the stress distribution due to change in ATAA shape. Moreover, stress redistribution leads to collagen deposition where the maximum elastin mass is lost, which in turn leads to stiffening of the arterial wall. As future work, the predictions of this G&R framework will be validated on datasets of patient-specific ATAA geometries followed up over a significant number of years.

摘要

在其对机械生物平衡的永久探索中,我们的脉管系统在多种生理和病理条件下跨越多个长度和时间尺度显著适应。血管生长和重塑(G&R)的计算建模大大提高了我们对高血压或动脉瘤等疾病的机械生物学过程的认识。然而,基于有限元模型(FEM)的升主动脉瘤(ATAA)演变的患者特异性计算建模仍然是一个具有挑战性的科学问题,尽管该研究主题具有重要意义,但很少有贡献。挑战与复杂的边界条件和几何形状以及特定于层的 G&R 反应有关。为了解决这些挑战,在当前的论文中,我们采用了约束混合模型(CMM)将动脉壁建模为不同成分的混合物,例如弹性蛋白、胶原纤维家族和平滑肌细胞。作为 UMAT 在 Abaqus 中实现,这是第一个基于 CMM 的人类 ATAA 的 G&R 的患者特异性 FEM,首先针对单层层厚圆柱和双层层厚 toric 动脉几何形状等典型问题进行了验证。然后,它被用于预测患者特定的主动脉几何形状的 ATAA 演变,表明 ATAA 的典型形状可以通过位于血液动力学紊乱区域的弹性蛋白蛋白水解简单产生。结果表明,由于 ATAA 形状的变化,弹性蛋白的损失会导致向中膜转移应力,并且会不断适应应力分布。此外,应力再分配会导致胶原蛋白沉积,最大弹性蛋白质量丧失,这反过来又会导致动脉壁变硬。作为未来的工作,这种 G&R 框架的预测将在经过多年随访的患者特异性 ATAA 几何形状数据集上进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验