Suppr超能文献

通过结合缺陷和异质结工程来提高超级电容器电极材料的电化学性能。

Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors.

作者信息

Zhou Xinyi, Yue Xiaoqiu, Dong Yingxia, Zheng Qiaoji, Lin Dunmin, Du Xiaosong, Qu Guoxing

机构信息

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.

出版信息

J Colloid Interface Sci. 2021 Oct;599:68-78. doi: 10.1016/j.jcis.2021.04.076. Epub 2021 Apr 19.

Abstract

The poor conductivity and deficient active sites of transition metal oxides lead to low energy density of supercapacitors, which limits their wide application. In this work, double transition metal oxide heterojunctions with oxygen vacancy (V-ZnO/CoO) nanowires are prepared by effective hydrothermal and thermal treatments. The formation of the heterojunction results in the redistribution of interface charge between ZnO and CoO, generating an internal electric field to accelerate the electron transport. Meanwhile, oxygen vacancies can enhance the redox reaction activity to further improve the electrochemical kinetics of the electrode material. Therefore, the prepared V-ZnO/CoO can provide a superior specific capacity of 845 C g (1 A g). An asymmetric supercapacitor with the V-ZnO/CoO as positive electrode shows a higher energy density of 51.6 Wh kg when the power density reaches 799.9 W kg. This work proposes a synergistic combination of defect and heterojunction engineering to improve the electrochemical properties of materials, providing an important guidance for material design in energy-storage field.

摘要

过渡金属氧化物的低电导率和活性位点不足导致超级电容器的能量密度较低,这限制了它们的广泛应用。在这项工作中,通过有效的水热和热处理制备了具有氧空位的双过渡金属氧化物异质结(V-ZnO/CoO)纳米线。异质结的形成导致ZnO和CoO之间界面电荷的重新分布,产生内部电场以加速电子传输。同时,氧空位可以增强氧化还原反应活性,进一步改善电极材料的电化学动力学。因此,制备的V-ZnO/CoO可以提供845 C g(1 A g)的优异比容量。以V-ZnO/CoO作为正极的不对称超级电容器在功率密度达到799.9 W kg时显示出51.6 Wh kg的更高能量密度。这项工作提出了缺陷和异质结工程的协同组合,以改善材料的电化学性能,为储能领域的材料设计提供了重要指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验