Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, 23622, Saudi Arabia.
Environ Sci Pollut Res Int. 2021 Sep;28(36):49541-49549. doi: 10.1007/s11356-021-14094-z. Epub 2021 May 2.
The present study reports the design of heterogeneous photocatalytic system using FeO with chitosan (CS) as a matrix for the sonophotocatalytic degradation of 2,4,6-trichlorophenol (2,4,6-TCP). CS was chosen as a polymer matrix as it is abundant in nature, eco-friendly, and can be easily processed into microparticles, nanofibers, as well as nanoparticles and shows the tendency of adhesion towards a vast range of solid substrates besides serving as a chelating agent toward metallic oxides. The nanohybrids were characterized via Fourier transformation infrared spectrum (FT-IR), X-ray diffraction (XRD), scanning electron microscopy coupled with electron dispersive spectrum (SEM-EDS), thermogravimetric analysis (TGA), and UV-visible diffuse reflectance (UV-Vis-DRS) analyses. Infrared spectroscopy (IR) studies confirmed synergistic interaction between FeO and CS. The XRD measurements confirmed the crystalline morphology while SEM revealed formation of rod-like structures. The TGA studies confirmed higher thermal stability of CS/FeO as compared to pure CS. The optical band gap for CS and CS/FeO was calculated to be 3 eV and 2.25 eV, respectively, from diffuse reflectance spectral (DRS) studies. Rapid photocatalytic degradation of 2,4,6-TCP was observed under UV light irradiation in presence of CS and CS/FeO nanohybrids which revealed 83.19% and 95.20% degradation within a short span of 60 min. The degraded fragments were identified using liquid chromatography-mass spectrometry (LC-MS). The present study on the development of ecofriendly nanohybrid photocatalyst is expected to provide experimental basis for the future development of CS-based photocatalysts which can be easily processed into membranes/filters for the industrial scale degradation of toxic organic pollutants.
本研究报告了一种使用 FeO 与壳聚糖 (CS) 作为基质的非均相光催化体系的设计,用于超声光催化降解 2,4,6-三氯苯酚 (2,4,6-TCP)。CS 被选为聚合物基质,因为它在自然界中丰富、环保,并且可以很容易地加工成微粒子、纳米纤维以及纳米粒子,并且除了作为金属氧化物的螯合剂之外,还表现出对广泛的固体底物的粘附倾向。纳米杂化材料通过傅里叶变换红外光谱 (FT-IR)、X 射线衍射 (XRD)、扫描电子显微镜与电子分散谱 (SEM-EDS)、热重分析 (TGA) 和紫外可见漫反射 (UV-Vis-DRS) 分析进行了表征。红外光谱 (IR) 研究证实了 FeO 和 CS 之间的协同相互作用。XRD 测量证实了结晶形态,而 SEM 则揭示了棒状结构的形成。TGA 研究证实了 CS/FeO 比纯 CS 具有更高的热稳定性。从漫反射光谱 (DRS) 研究中计算出 CS 和 CS/FeO 的光学带隙分别为 3 eV 和 2.25 eV。在 CS 和 CS/FeO 纳米杂化物存在下,在紫外光照射下,2,4,6-TCP 的快速光催化降解得到观察,在短短 60 分钟内降解率分别达到 83.19%和 95.20%。使用液相色谱-质谱 (LC-MS) 鉴定了降解产物。本研究开发了环保型纳米杂化光催化剂,为未来基于 CS 的光催化剂的发展提供了实验基础,这些光催化剂可以很容易地加工成膜/过滤器,用于工业规模降解有毒有机污染物。