Suppr超能文献

扰动速度、方向、背景肌肉激活及任务指令对前臂肌肉长潜伏期反应的影响

Effects of Perturbation Velocity, Direction, Background Muscle Activation, and Task Instruction on Long-Latency Responses Measured From Forearm Muscles.

作者信息

Weinman Jacob, Arfa-Fatollahkhani Paria, Zonnino Andrea, Nikonowicz Rebecca C, Sergi Fabrizio

机构信息

Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, United States.

出版信息

Front Hum Neurosci. 2021 Apr 16;15:639773. doi: 10.3389/fnhum.2021.639773. eCollection 2021.

Abstract

The central nervous system uses feedback processes that occur at multiple time scales to control interactions with the environment. The long-latency response (LLR) is the fastest process that directly involves cortical areas, with a motoneuron response measurable 50 ms following an imposed limb displacement. Several behavioral factors concerning perturbation mechanics and the active role of muscles prior or during the perturbation can modulate the long-latency response amplitude (LLRa) in the upper limbs, but the interactions among many of these factors had not been systematically studied before. We conducted a behavioral study on thirteen healthy individuals to determine the effect and interaction of four behavioral factors - background muscle torque, perturbation direction, perturbation velocity, and task instruction - on the LLRa evoked from the flexor carpi radialis (FCR) and extensor carpi ulnaris (ECU) muscles after velocity-controlled wrist displacements. The effects of the four factors were quantified using both a 0D statistical analysis on the average perturbation-evoked EMG signal in the period corresponding to an LLR, and using a timeseries analysis of EMG signals. All factors significantly modulated LLRa, and their combination nonlinearly contributed to modulating the LLRa. Specifically, all the three-way interaction terms that could be computed without including the interaction between instruction and velocity significantly modulated the LLR. Analysis of the three-way interaction terms of the 0D model indicated that for the ECU muscle, the LLRa evoked when subjects are asked to maintain their muscle activation in response to the perturbations was greater than the one observed when subjects yielded to the perturbations ( < 0.001), but this effect was not measured for muscles undergoing shortening or in absence of background muscle activation. Moreover, higher perturbation velocity increased the LLRa evoked from the stretched muscle in presence of a background torque ( < 0.001), but no effects of velocity were measured in absence of background torque. Also, our analysis identified significant modulations of LLRa in muscles shortened by the perturbation, including an interaction between torque and velocity, and an effect of both torque and velocity. The time-series analysis indicated the significance of additional transient effects in the LLR region for muscles undergoing shortening.

摘要

中枢神经系统利用在多个时间尺度上发生的反馈过程来控制与环境的相互作用。长潜伏期反应(LLR)是直接涉及皮层区域的最快过程,在施加肢体位移后50毫秒可测量到运动神经元反应。一些关于扰动力学以及扰动之前或期间肌肉的主动作用的行为因素可以调节上肢的长潜伏期反应幅度(LLRa),但这些因素中许多因素之间的相互作用此前尚未得到系统研究。我们对13名健康个体进行了一项行为研究,以确定四个行为因素——背景肌肉扭矩、扰动方向、扰动速度和任务指令——对速度控制的腕部位移后桡侧腕屈肌(FCR)和尺侧腕伸肌(ECU)诱发的LLRa的影响及相互作用。使用对应于LLR的时间段内平均扰动诱发的肌电图信号的零维统计分析以及肌电图信号的时间序列分析对这四个因素的影响进行了量化。所有因素均显著调节LLRa,并且它们的组合对LLRa的调节具有非线性作用。具体而言,所有可以在不包括指令与速度之间相互作用的情况下计算的三因素交互项均显著调节LLR。零维模型的三因素交互项分析表明,对于ECU肌肉,当要求受试者在受到扰动时保持肌肉激活时诱发的LLRa大于受试者顺应扰动时观察到的LLRa(<0.001),但对于正在缩短或不存在背景肌肉激活的肌肉未测量到这种效应。此外,更高的扰动速度会增加在存在背景扭矩时从伸展肌肉诱发的LLRa(<0.001),但在不存在背景扭矩时未测量到速度的影响。而且,我们的分析确定了在因扰动而缩短的肌肉中LLRa的显著调节,包括扭矩与速度之间的相互作用以及扭矩和速度两者的效应。时间序列分析表明,对于正在缩短的肌肉,LLR区域中还存在其他瞬态效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7683/8085277/7f63c32720fb/fnhum-15-639773-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验