IBM Almaden Research Center, San Jose, CA.
AMIA Annu Symp Proc. 2021 Jan 25;2020:593-601. eCollection 2020.
The application of deep learning algorithms in medical imaging analysis is a steadily growing research area. While deep learning methods are thriving in the medical domain, they seldom utilize the rich knowledge associated with connected radiology reports. The knowledge derived from these reports can be utilized to enhance the performance of deep learning models. In this work, we used a comprehensive chest X-ray findings vocabulary to automatically annotate an extensive collection of chest X-rays using associated radiology reports and a vocabulary-driven concept annotation algorithm. The annotated X-rays are used to train a deep neural network classifier for finding detection. Finally, we developed a knowledge-driven reasoning algorithm that leverages knowledge learned from X-ray reports to improve upon the deep learning module's performance on finding detection. Our results suggest that combining deep learning and knowledge from radiology reports in a hybrid framework can significantly enhance overall performance in the CXR finding detection.
深度学习算法在医学影像分析中的应用是一个不断发展的研究领域。虽然深度学习方法在医学领域蓬勃发展,但它们很少利用与相关放射学报告相关的丰富知识。可以利用这些报告中的知识来提高深度学习模型的性能。在这项工作中,我们使用了全面的胸部 X 射线发现词汇表,使用相关的放射学报告和词汇驱动的概念注释算法自动注释大量的胸部 X 射线。使用注释的 X 射线来训练用于查找检测的深度神经网络分类器。最后,我们开发了一种知识驱动的推理算法,该算法利用从 X 射线报告中学到的知识来提高深度学习模块在查找检测方面的性能。我们的结果表明,在混合框架中结合深度学习和放射学报告中的知识可以显著提高 CXR 发现检测的整体性能。