Suppr超能文献

从胸部X光片中提取和学习细粒度标签。

Extracting and Learning Fine-Grained Labels from Chest Radiographs.

作者信息

Syeda-Mahmood Tanveer, Wong K C L, Wu Joy T, Jadhav Ashutosh, Boyko Orest

机构信息

IBM Almaden Research Center, San Jose, California, USA.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:1190-1199. eCollection 2020.

Abstract

Chest radiographs are the most common diagnostic exam in emergency rooms and intensive care units today. Recently, a number of researchers have begun working on large chest X-ray datasets to develop deep learning models for recognition of a handful of coarse finding classes such as opacities, masses and nodules. In this paper, we focus on extracting and learning fine-grained labels for chest X-ray images. Specifically we develop a new method of extracting fine-grained labels from radiology reports by combining vocabulary-driven concept extraction with phrasal grouping in dependency parse trees for association of modifiers with findings. A total of457finegrained labels depicting the largest spectrum of findings to date were selected and sufficiently large datasets acquired to train a new deep learning model designed for fine-grained classification. We show results that indicate a highly accurate label extraction process and a reliable learning of fine-grained labels. The resulting network, to our knowledge, is the first to recognize fine-grained descriptions offindings in images covering over nine modifiers including laterality, location, severity, size and appearance.

摘要

胸部X光片是当今急诊室和重症监护病房最常见的诊断检查。最近,一些研究人员开始致力于大型胸部X光数据集的研究,以开发用于识别少数粗略发现类别的深度学习模型,如肺部混浊、肿块和结节。在本文中,我们专注于为胸部X光图像提取和学习细粒度标签。具体而言,我们开发了一种新方法,通过将词汇驱动的概念提取与依存句法分析树中的短语分组相结合,从放射学报告中提取细粒度标签,以便将修饰词与检查结果相关联。总共选择了457个描绘迄今为止最大范围检查结果的细粒度标签,并获取了足够大的数据集来训练一个为细粒度分类设计的新深度学习模型。我们展示的结果表明标签提取过程高度准确,并且对细粒度标签的学习可靠。据我们所知,由此产生的网络是第一个能够识别图像中包含超过九个修饰词(包括侧位、位置、严重程度、大小和外观)的检查结果的细粒度描述的网络。

相似文献

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验