Center for Biomedical Informatics, Brown University, Providence, Rhode Island.
Rhode Island Quality Institute, Providence, Rhode Island.
AMIA Annu Symp Proc. 2021 Jan 25;2020:638-647. eCollection 2020.
Chief complaints are important textual data that can serve to enrich diagnosis and symptom data in electronic health record (EHR) systems. In this study, a method is presented to preprocess chief complaints and assign corresponding ICD-10-CM codes using the MetaMap natural language processing (NLP) system and Unified Medical Language System (UMLS) Metathesaurus. An exploratory analysis was conducted using a set of 7,942 unique chief complaints from the statewide health information exchange containing EHR data from hospitals across Rhode Island. An evaluation of the proposed method was then performed using a set of 123,086 chief complaints with corresponding ICD-10-CM encounter diagnoses. With 87.82% of MetaMap-extracted concepts correctly assigned, the preliminary findings support the potential use of the method explored in this study for improving upon existing NLP techniques for enabling use of data captured within chief complaints to support clinical care, research, and public health surveillance.
主要症状是重要的文本数据,可以丰富电子健康记录(EHR)系统中的诊断和症状数据。在这项研究中,提出了一种使用 MetaMap 自然语言处理(NLP)系统和统一医学语言系统(UMLS)Metathesaurus 预处理主要症状并分配相应的 ICD-10-CM 代码的方法。使用来自罗德岛州全州卫生信息交换的一组 7942 个独特的主要症状(包含来自罗德岛各地医院的 EHR 数据)进行了探索性分析。然后,使用一组 123086 个主要症状和相应的 ICD-10-CM 就诊诊断对所提出的方法进行了评估。MetaMap 提取的概念中有 87.82%被正确分配,初步结果支持本研究中探索的方法的潜在用途,该方法可以改进现有的 NLP 技术,以利用主要症状中捕获的数据支持临床护理、研究和公共卫生监测。