Suppr超能文献

使用临床自然语言处理进行健康结果研究:未来进展的概述和可行建议。

Using clinical Natural Language Processing for health outcomes research: Overview and actionable suggestions for future advances.

机构信息

Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; School of Electrical Engineering and Computer Science, KTH, Stockholm, Sweden.

College of Engineering and Computer Science, The Australian National University, Data61/CSIRO, University of Canberra, Australia; University of Turku, Finland.

出版信息

J Biomed Inform. 2018 Dec;88:11-19. doi: 10.1016/j.jbi.2018.10.005. Epub 2018 Oct 24.

Abstract

The importance of incorporating Natural Language Processing (NLP) methods in clinical informatics research has been increasingly recognized over the past years, and has led to transformative advances. Typically, clinical NLP systems are developed and evaluated on word, sentence, or document level annotations that model specific attributes and features, such as document content (e.g., patient status, or report type), document section types (e.g., current medications, past medical history, or discharge summary), named entities and concepts (e.g., diagnoses, symptoms, or treatments) or semantic attributes (e.g., negation, severity, or temporality). From a clinical perspective, on the other hand, research studies are typically modelled and evaluated on a patient- or population-level, such as predicting how a patient group might respond to specific treatments or patient monitoring over time. While some NLP tasks consider predictions at the individual or group user level, these tasks still constitute a minority. Owing to the discrepancy between scientific objectives of each field, and because of differences in methodological evaluation priorities, there is no clear alignment between these evaluation approaches. Here we provide a broad summary and outline of the challenging issues involved in defining appropriate intrinsic and extrinsic evaluation methods for NLP research that is to be used for clinical outcomes research, and vice versa. A particular focus is placed on mental health research, an area still relatively understudied by the clinical NLP research community, but where NLP methods are of notable relevance. Recent advances in clinical NLP method development have been significant, but we propose more emphasis needs to be placed on rigorous evaluation for the field to advance further. To enable this, we provide actionable suggestions, including a minimal protocol that could be used when reporting clinical NLP method development and its evaluation.

摘要

近年来,自然语言处理(NLP)方法在临床信息学研究中的重要性日益得到认可,并带来了变革性的进展。通常,临床 NLP 系统是在词、句或文档级别的标注上开发和评估的,这些标注可以模拟特定的属性和特征,例如文档内容(例如,患者状态或报告类型)、文档部分类型(例如,当前用药、既往病史或出院小结)、命名实体和概念(例如,诊断、症状或治疗)或语义属性(例如,否定、严重程度或时间性)。另一方面,从临床角度来看,研究通常是在患者或人群层面上建模和评估的,例如预测患者群体如何对特定治疗或随时间推移的患者监测做出反应。虽然有些 NLP 任务考虑了个体或群体用户的预测,但这些任务仍然占少数。由于每个领域的科学目标存在差异,并且由于方法评估重点的不同,这些评估方法之间没有明确的一致性。在这里,我们提供了一个广泛的总结和概述,介绍了为用于临床结果研究的 NLP 研究定义适当的内在和外在评估方法所涉及的具有挑战性的问题,反之亦然。我们特别关注心理健康研究,这是临床 NLP 研究社区相对研究较少但 NLP 方法具有显著相关性的领域。临床 NLP 方法开发的最新进展意义重大,但我们认为该领域需要进一步加强严格的评估。为此,我们提供了切实可行的建议,包括在报告临床 NLP 方法开发及其评估时可以使用的最小协议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d5c/6986921/02917f48d484/EMS83088-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验