Suppr超能文献

非结构化临床记录中的压疮损伤:检测与解读。

Pressure Ulcer Injury in Unstructured Clinical Notes: Detection and Interpretation.

机构信息

Department of Computer Science, Emory University, Atlanta, GA, US.

Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, US.

出版信息

AMIA Annu Symp Proc. 2021 Jan 25;2020:1160-1169. eCollection 2020.

Abstract

Hospital-acquired pressure ulcer injury (PUI) is a primary nursing quality metric, reflecting the caliber of nursing care within a hospital. Prior studies have used the Braden scale and structured data from the electronic health records to detect/predict PUI while the informative unstructured clinical notes have not been used. We propose automated PUI detection using a novel negation-detection algorithm applied to unstructured clinical notes. Our detection framework is on-demand, requiring minimal cost. In application to the MIMIC-III dataset, the text features produced using our algorithm resulted in improved PUI detection when evaluated using logistic regression, random forests, and neural networks compared to text features without negation detection. Exploratory analysis reveals substantial overlap between key classifier features and leading clinical attributes of PUI, adding interpretability to our solution. Our method could also considerably reduce nurses' evaluations by automatic detection of most cases, leaving only the most uncertain cases for nursing assessment.

摘要

医院获得性压力性溃疡损伤(PUI)是一个主要的护理质量指标,反映了医院内护理的水平。先前的研究已经使用布雷登量表和电子健康记录中的结构化数据来检测/预测 PUI,而未使用有信息的非结构化临床记录。我们提出了一种使用新颖的否定检测算法自动检测 PUI 的方法,该算法应用于非结构化临床记录。我们的检测框架是按需的,需要的成本最小。在应用于 MIMIC-III 数据集时,与未进行否定检测的文本特征相比,使用我们的算法生成的文本特征在使用逻辑回归、随机森林和神经网络进行评估时,可提高 PUI 的检测效果。探索性分析表明,关键分类器特征与 PUI 的主要临床属性之间存在大量重叠,为我们的解决方案增加了可解释性。我们的方法还可以通过自动检测大多数病例来大大减少护士的评估,只留下最不确定的病例供护理评估。

相似文献

1
Pressure Ulcer Injury in Unstructured Clinical Notes: Detection and Interpretation.
AMIA Annu Symp Proc. 2021 Jan 25;2020:1160-1169. eCollection 2020.
2
Evaluating Natural Language Processing Packages for Predicting Hospital-Acquired Pressure Injuries From Clinical Notes.
Comput Inform Nurs. 2024 Mar 1;42(3):184-192. doi: 10.1097/CIN.0000000000001053.
3
Automated Pressure Injury Risk Assessment System Incorporated Into an Electronic Health Record System.
Nurs Res. 2017 Nov/Dec;66(6):462-472. doi: 10.1097/NNR.0000000000000245.
4
The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
J Am Geriatr Soc. 2018 Aug;66(8):1499-1507. doi: 10.1111/jgs.15411. Epub 2018 Jul 4.
5
Predicting Mortality in Critical Care Patients with Fungemia Using Structured and Unstructured Data.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5459-5463. doi: 10.1109/EMBC44109.2020.9175287.
6
Combining structured and unstructured data for predictive models: a deep learning approach.
BMC Med Inform Decis Mak. 2020 Oct 29;20(1):280. doi: 10.1186/s12911-020-01297-6.
7
Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.
BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):65. doi: 10.1186/s12911-017-0471-z.
9
Automated Surgical Term Clustering: A Text Mining Approach for Unstructured Textual Surgery Descriptions.
IEEE J Biomed Health Inform. 2020 Jul;24(7):2107-2118. doi: 10.1109/JBHI.2019.2956973. Epub 2019 Dec 2.
10
Automatic generation of case-detection algorithms to identify children with asthma from large electronic health record databases.
Pharmacoepidemiol Drug Saf. 2013 Aug;22(8):826-33. doi: 10.1002/pds.3438. Epub 2013 Apr 17.

引用本文的文献

4
An AdaBoost-based algorithm to detect hospital-acquired pressure injury in the presence of conflicting annotations.
Comput Biol Med. 2024 Jan;168:107754. doi: 10.1016/j.compbiomed.2023.107754. Epub 2023 Nov 22.
5
Evaluating Natural Language Processing Packages for Predicting Hospital-Acquired Pressure Injuries From Clinical Notes.
Comput Inform Nurs. 2024 Mar 1;42(3):184-192. doi: 10.1097/CIN.0000000000001053.
7
A systematic review of predictive models for hospital-acquired pressure injury using machine learning.
Nurs Open. 2023 Mar;10(3):1234-1246. doi: 10.1002/nop2.1429. Epub 2022 Oct 30.

本文引用的文献

2
Risk assessment tools for the prevention of pressure ulcers.
Cochrane Database Syst Rev. 2019 Jan 31;1(1):CD006471. doi: 10.1002/14651858.CD006471.pub4.
3
Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System.
J Wound Ostomy Continence Nurs. 2016 Nov/Dec;43(6):585-597. doi: 10.1097/WON.0000000000000281.
4
The Challenge of Predicting Pressure Ulcers in Critically Ill Patients. A Multicenter Cohort Study.
Ann Am Thorac Soc. 2016 Oct;13(10):1775-1783. doi: 10.1513/AnnalsATS.201603-154OC.
5
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
6
Examination of the accuracy of coding hospital-acquired pressure ulcer stages.
Medicare Medicaid Res Rev. 2013 Dec 24;3(4). doi: 10.5600/mmrr.003.04.b03. eCollection 2013.
7
Using EHR data to predict hospital-acquired pressure ulcers: a prospective study of a Bayesian Network model.
Int J Med Inform. 2013 Nov;82(11):1059-67. doi: 10.1016/j.ijmedinf.2013.06.012. Epub 2013 Jul 24.
8
High cost of stage IV pressure ulcers.
Am J Surg. 2010 Oct;200(4):473-7. doi: 10.1016/j.amjsurg.2009.12.021.
9
Medical device related pressure ulcers in hospitalized patients.
Int Wound J. 2010 Oct;7(5):358-65. doi: 10.1111/j.1742-481X.2010.00699.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验