Suppr超能文献

使用机器学习预测重症监护病房中压疮的发生率。

Predicting the Incidence of Pressure Ulcers in the Intensive Care Unit Using Machine Learning.

作者信息

Cramer Eric M, Seneviratne Martin G, Sharifi Husham, Ozturk Alp, Hernandez-Boussard Tina

机构信息

Department of Biomedical Informatics, Stanford University, US.

Department of Computer Science, Stanford University, US.

出版信息

EGEMS (Wash DC). 2019 Sep 5;7(1):49. doi: 10.5334/egems.307.

Abstract

BACKGROUND

Reducing hospital-acquired pressure ulcers (PUs) in intensive care units (ICUs) has emerged as an important quality metric for health systems internationally. Limited work has been done to characterize the profile of PUs in the ICU using observational data from the electronic health record (EHR). Consequently, there are limited EHR-based prognostic tools for determining a patient's risk of PU development, with most institutions relying on nurse-calculated risk scores such as the Braden score to identify high-risk patients.

METHODS AND RESULTS

Using EHR data from 50,851 admissions in a tertiary ICU (MIMIC-III), we show that the prevalence of PUs at stage 2 or above is 7.8 percent. For the 1,690 admissions where a PU was recorded on day 2 or beyond, we evaluated the prognostic value of the Braden score measured within the first 24 hours. A high-risk Braden score (<=12) had precision 0.09 and recall 0.50 for the future development of a PU. We trained a range of machine learning algorithms using demographic parameters, diagnosis codes, laboratory values and vitals available from the EHR within the first 24 hours. A weighted linear regression model showed precision 0.09 and recall 0.71 for future PU development. Classifier performance was not improved by integrating Braden score elements into the model.

CONCLUSION

We demonstrate that an EHR-based model can outperform the Braden score as a screening tool for PUs. This may be a useful tool for automatic risk stratification early in an admission, helping to guide quality protocols in the ICU, including the allocation and timing of prophylactic interventions.

摘要

背景

减少重症监护病房(ICU)中的医院获得性压疮(PU)已成为国际卫生系统的一项重要质量指标。利用电子健康记录(EHR)中的观察数据来描述ICU中PU的特征所做的工作有限。因此,基于EHR的用于确定患者发生PU风险的预后工具有限,大多数机构依靠护士计算的风险评分,如Braden评分来识别高危患者。

方法与结果

使用来自三级ICU(MIMIC-III)50851例入院患者的EHR数据,我们发现2期及以上PU的患病率为7.8%。对于在第2天或之后记录有PU的1690例入院患者,我们评估了入院后前24小时内测得的Braden评分的预后价值。高危Braden评分(<=12)对于PU未来发生情况的精确率为0.09,召回率为0.50。我们使用EHR在前24小时内可获得的人口统计学参数、诊断代码、实验室值和生命体征训练了一系列机器学习算法。一个加权线性回归模型对于PU未来发生情况的精确率为0.09,召回率为0.71。将Braden评分要素纳入模型并未提高分类器性能。

结论

我们证明,基于EHR的模型作为PU的筛查工具可以优于Braden评分。这可能是入院早期进行自动风险分层的有用工具,有助于指导ICU中的质量方案,包括预防性干预的分配和时机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验