Suppr超能文献

用于单细胞电阻抗测量的微流控电极阵列的设计与三维建模研究。

Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells.

机构信息

Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, P. R. China.

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China.

出版信息

Electrophoresis. 2021 Oct;42(20):1996-2009. doi: 10.1002/elps.202100028. Epub 2021 May 24.

Abstract

High-resolution microscopic imaging may cause intensive image processing and potential impact of light irradiation on yeast replicative lifespan (RLS). Electrical impedance spectroscopy (EIS) could be alternatively used to perform high-throughput and label-free yeast RLS assays. Prior to fabricating EIS-integrated microfluidic devices for yeast RLS determination, systematic modeling and theoretical investigation are crucial for device design and optimization. Here, we report three-dimensional (3D) finite-element modeling and simulations of EIS measurement in a microfluidic single yeast in situ impedance array (SYIIA), which is designed by patterning an electrode matrix underneath a cell-trapping array. SYIIA was instantiated and modeled as a 5 × 5 sensing array comprising 25 units for cell immobilization, culturing, and time-lapse EIS recording. Simulations of yeast growing and budding in a sensing unit demonstrated that EIS signals enable the characterization of cell growth and daughter-cell dissections. In the 5 × 5 sensing array, simulation results indicated that when monitoring a target cell, daughter dissections in its surrounding traps may induce variations of the recorded EIS signals, which could cause mistakes in identifying target daughter-cell dissections. To eliminate the mis-identifications, electrode array pitch was optimized. Therefore, the results could conduct the design and optimization of microfluidic electrode-array-integrated devices for high-throughput and accurate yeast RLS assays.

摘要

高分辨率显微镜成像可能需要进行密集的图像处理,并且可能会对酵母复制寿命(RLS)产生光照射的潜在影响。替代方法是使用电化学阻抗谱(EIS)进行高通量和无标记的酵母 RLS 测定。在为酵母 RLS 测定制造集成 EIS 的微流控设备之前,系统建模和理论研究对于设备设计和优化至关重要。在这里,我们报告了在微流中单酵母原位阻抗阵列(SYIIA)中的 EIS 测量的三维(3D)有限元建模和模拟,该阵列是通过在细胞捕获阵列下方图案化电极矩阵设计的。SYIIA 被实例化为包含用于细胞固定、培养和时移 EIS 记录的 25 个单元的 5×5 传感阵列进行建模。在一个传感单元中酵母生长和出芽的模拟表明,EIS 信号能够表征细胞生长和子细胞分离。在 5×5 传感阵列中,模拟结果表明,在监测目标细胞时,其周围陷阱中的子细胞分离可能会引起记录的 EIS 信号的变化,这可能导致在识别目标子细胞分离时出错。为了消除错误识别,可以优化电极阵列间距。因此,结果可以为高通量和准确的酵母 RLS 测定的微流控电极阵列集成设备的设计和优化提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验