Suppr超能文献

细胞骨架肌动蛋白丝密度变化对扩散囊泡介导的细胞运输的影响的数值分析。

Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport.

机构信息

Institute of Biomechanics, Graz University of Technology, Graz, Austria.

Chair of Structural Mechanics and Analysis, TU Berlin, Berlin, Germany.

出版信息

PLoS Comput Biol. 2021 May 3;17(5):e1008784. doi: 10.1371/journal.pcbi.1008784. eCollection 2021 May.

Abstract

The interior of a eukaryotic cell is a highly complex composite material which consists of water, structural scaffoldings, organelles, and various biomolecular solutes. All these components serve as obstacles that impede the motion of vesicles. Hence, it is hypothesized that any alteration of the cytoskeletal network may directly impact or even disrupt the vesicle transport. A disruption of the vesicle-mediated cell transport is thought to contribute to several severe diseases and disorders, such as diabetes, Parkinson's and Alzheimer's disease, emphasizing the clinical relevance. To address the outlined objective, a multiscale finite element model of the diffusive vesicle transport is proposed on the basis of the concept of homogenization, owed to the complexity of the cytoskeletal network. In order to study the microscopic effects of specific nanoscopic actin filament network alterations onto the vesicle transport, a parametrized three-dimensional geometrical model of the actin filament network was generated on the basis of experimentally observed filament densities and network geometries in an adenocarcinomic human alveolar basal epithelial cell. Numerical analyzes of the obtained effective diffusion properties within two-dimensional sampling domains of the whole cell model revealed that the computed homogenized diffusion coefficients can be predicted statistically accurate by a simple two-parameter power law as soon as the inaccessible area fraction, due to the obstacle geometries and the finite size of the vesicles, is known. This relationship, in turn, leads to a massive reduction in computation time and allows to study the impact of a variety of different cytoskeletal alterations onto the vesicle transport. Hence, the numerical simulations predicted a 35% increase in transport time due to a uniformly distributed four-fold increase of the total filament amount. On the other hand, a hypothetically reduced expression of filament cross-linking proteins led to sparser filament networks and, thus, a speed up of the vesicle transport.

摘要

真核细胞的内部是一种高度复杂的复合材料,由水、结构支架、细胞器和各种生物分子溶质组成。所有这些成分都充当了阻碍囊泡运动的障碍物。因此,人们假设细胞骨架网络的任何改变都可能直接影响甚至破坏囊泡运输。囊泡介导的细胞运输的破坏被认为是导致几种严重疾病和障碍的原因,如糖尿病、帕金森病和阿尔茨海默病,强调了其临床相关性。为了解决所提出的目标,基于均匀化的概念,针对细胞骨架网络的复杂性,提出了扩散囊泡运输的多尺度有限元模型。为了研究特定纳米级肌动蛋白丝网络改变对囊泡运输的微观影响,基于在腺癌细胞中观察到的丝密度和网络几何形状,生成了一个参数化的三维肌动蛋白丝网络几何模型。在整个细胞模型的二维采样域内对获得的有效扩散性质进行数值分析表明,只要由于障碍物的几何形状和囊泡的有限大小而无法进入的面积分数已知,计算出的均匀化扩散系数就可以通过简单的双参数幂律进行统计准确预测。这种关系反过来又大大减少了计算时间,并允许研究各种不同的细胞骨架改变对囊泡运输的影响。因此,数值模拟预测由于总丝数量均匀增加四倍,运输时间会增加 35%。另一方面,假设丝交联蛋白的表达减少会导致丝网络更加稀疏,从而加速囊泡运输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5957/8130967/f23dc66d5757/pcbi.1008784.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验