Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, 8032, Zurich, Switzerland.
Boston Scientific Medizintechnik GmbH, Daniel-Goldbach-Strasse 17-27, 40880 Ratingen, Germany.
Neuroimage. 2021 Aug 15;237:118096. doi: 10.1016/j.neuroimage.2021.118096. Epub 2021 May 1.
Drugs affecting neuromodulation, for example by dopamine or acetylcholine, take centre stage among therapeutic strategies in psychiatry. These neuromodulators can change both neuronal gain and synaptic plasticity and therefore affect electrophysiological measures. An important goal for clinical diagnostics is to exploit this effect in the reverse direction, i.e., to infer the status of specific neuromodulatory systems from electrophysiological measures. In this study, we provide proof-of-concept that the functional status of cholinergic (specifically muscarinic) receptors can be inferred from electrophysiological data using generative (dynamic causal) models. To this end, we used epidural EEG recordings over two auditory cortical regions during a mismatch negativity (MMN) paradigm in rats. All animals were treated, across sessions, with muscarinic receptor agonists and antagonists at different doses. Together with a placebo condition, this resulted in five levels of muscarinic receptor status. Using a dynamic causal model - embodying a small network of coupled cortical microcircuits - we estimated synaptic parameters and their change across pharmacological conditions. The ensuing parameter estimates associated with (the neuromodulation of) synaptic efficacy showed both graded muscarinic effects and predictive validity between agonistic and antagonistic pharmacological conditions. This finding illustrates the potential utility of generative models of electrophysiological data as computational assays of muscarinic function. In application to EEG data of patients from heterogeneous spectrum diseases, e.g. schizophrenia, such models might help identify subgroups of patients that respond differentially to cholinergic treatments. SIGNIFICANCE STATEMENT: In psychiatry, the vast majority of pharmacological treatments affect actions of neuromodulatory transmitters, e.g. dopamine or acetylcholine. As treatment is largely trial-and-error based, one of the goals for computational psychiatry is to construct mathematical models that can serve as "computational assays" and infer the status of specific neuromodulatory systems in individual patients. This translational neuromodeling strategy has great promise for electrophysiological data in particular but requires careful validation. The present study demonstrates that the functional status of cholinergic (muscarinic) receptors can be inferred from electrophysiological data using dynamic causal models of neural circuits. While accuracy needs to be enhanced and our results must be replicated in larger samples, our current results provide proof-of-concept for computational assays of muscarinic function using EEG.
影响神经调节的药物,例如多巴胺或乙酰胆碱,在精神病学的治疗策略中占据中心地位。这些神经调节剂可以改变神经元的增益和突触可塑性,从而影响电生理测量。临床诊断的一个重要目标是利用这种效应的反方向,即从电生理测量中推断特定神经调节系统的状态。在这项研究中,我们提供了概念验证,即使用生成(动态因果)模型可以从电生理数据中推断胆碱能(特别是毒蕈碱)受体的功能状态。为此,我们使用大鼠听觉皮层两个区域的硬膜外 EEG 记录,在错配负波(MMN)范式期间。所有动物在不同剂量的毒蕈碱受体激动剂和拮抗剂的治疗下,在不同的时间点进行治疗。再加上安慰剂条件,这导致了五种不同的毒蕈碱受体状态。使用动态因果模型——体现了一个耦合皮质微电路的小网络——我们估计了突触参数及其在药物条件下的变化。随后的与(突触效能的)神经调节相关的参数估计显示了毒蕈碱作用的分级效应和激动剂与拮抗剂药物条件之间的预测有效性。这一发现说明了电生理数据生成模型作为毒蕈碱功能计算测定的潜在效用。在应用于来自异质谱疾病(如精神分裂症)的患者的 EEG 数据时,此类模型可能有助于识别对胆碱能治疗反应不同的患者亚组。
在精神病学中,绝大多数药物治疗都影响神经递质的作用,例如多巴胺或乙酰胆碱。由于治疗主要是基于试验和错误,计算精神病学的目标之一是构建可以作为“计算测定”的数学模型,并推断个体患者中特定神经调节系统的状态。这种转化神经建模策略对电生理数据特别有希望,但需要仔细验证。本研究表明,使用神经网络的动态因果模型可以从电生理数据中推断胆碱能(毒蕈碱)受体的功能状态。虽然准确性需要提高,并且我们的结果需要在更大的样本中复制,但我们目前的结果为使用 EEG 进行毒蕈碱功能的计算测定提供了概念验证。