Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA.
Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, South Korea.
J Bacteriol. 2021 Jun 22;203(14):e0014321. doi: 10.1128/JB.00143-21.
Proteolysis is a fundamental property of all living cells. In the bacterium Salmonella enterica serovar Typhimurium, the HspQ protein controls the specificities of the Lon and ClpAP proteases. Upon acetylation, HspQ stops being a Lon substrate and no longer enhances proteolysis of the Lon substrate Hha. The accumulated HspQ protein binds to the protease adaptor ClpS, hindering proteolysis of ClpS-dependent substrates of ClpAP, such as Oat, a promoter of antibiotic persistence. HspQ is acetylated by the protein acetyltransferase Pat from acetyl coenzyme A (acetyl-CoA) bound to the acetyl-CoA binding protein Qad. We now report that low cytoplasmic Mg promotes expression, which protects substrates of Lon and ClpSAP by increasing HspQ amounts. The promoter is activated by PhoP, a regulatory protein highly activated in low cytoplasmic Mg that also represses transcription. Both the gene and PhoP repression of the promoter are necessary for antibiotic persistence. PhoP also promotes transcription in Escherichia coli, which shares a similar PhoP box in the promoter region with Typhimurium, Salmonella bongori, and Enterobacter cloacae. Our findings identify cytoplasmic Mg and the PhoP protein as critical regulators of protease specificity in multiple enteric bacteria. The bacterium Salmonella enterica serovar Typhimurium narrows down the spectrum of substrates degraded by the proteases Lon and ClpAP in response to low cytoplasmic Mg, a condition that decreases protein synthesis. This control is exerted by PhoP, a transcriptional regulator activated in low cytoplasmic Mg that governs proteostasis and is conserved in enteric bacteria. The uncovered mechanism enables bacteria to control the abundance of preexisting proteins.
蛋白水解作用是所有活细胞的基本特性。在沙门氏菌伤寒血清型 Typhimurium 中,HspQ 蛋白控制 Lon 和 ClpAP 蛋白酶的特异性。HspQ 乙酰化后,不再作为 Lon 的底物,也不再增强 Lon 底物 Hha 的蛋白水解作用。积累的 HspQ 蛋白与蛋白酶衔接子 ClpS 结合,阻碍 ClpAP 的 ClpS 依赖性底物,如 Oat 的蛋白水解作用,Oat 是抗生素持续存在的启动子。HspQ 由与乙酰辅酶 A 结合蛋白 Qad 结合的乙酰辅酶 A (acetyl-CoA) 上的蛋白乙酰转移酶 Pat 乙酰化。我们现在报告低细胞质 Mg 促进 表达,通过增加 HspQ 量来保护 Lon 和 ClpSAP 的底物。PhoP 激活 启动子,PhoP 是一种在低细胞质 Mg 中高度激活的调节蛋白,也抑制 转录。PhoP 对 基因和 启动子的抑制都是抗生素持续存在所必需的。PhoP 还在大肠杆菌中促进 转录,大肠杆菌在 启动子区域与 Typhimurium、Bongori 沙门氏菌和 Cloacae 肠杆菌共享一个类似的 PhoP 盒。我们的发现确定细胞质 Mg 和 PhoP 蛋白是多种肠杆菌蛋白酶特异性的关键调节剂。沙门氏菌伤寒血清型 Typhimurium 在低细胞质 Mg 条件下(降低蛋白质合成),缩小了 Lon 和 ClpAP 蛋白酶降解的底物谱。这种控制是由 PhoP 介导的,PhoP 是一种在低细胞质 Mg 中激活的转录调节剂,控制蛋白质平衡并在肠杆菌中保守。所揭示的机制使细菌能够控制现有蛋白质的丰度。