Suppr超能文献

细胞质镁离子水平降低可提高 Lon 和 ClpAP 蛋白酶的特异性。

Low Cytoplasmic Magnesium Increases the Specificity of the Lon and ClpAP Proteases.

机构信息

Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA.

Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, South Korea.

出版信息

J Bacteriol. 2021 Jun 22;203(14):e0014321. doi: 10.1128/JB.00143-21.

Abstract

Proteolysis is a fundamental property of all living cells. In the bacterium Salmonella enterica serovar Typhimurium, the HspQ protein controls the specificities of the Lon and ClpAP proteases. Upon acetylation, HspQ stops being a Lon substrate and no longer enhances proteolysis of the Lon substrate Hha. The accumulated HspQ protein binds to the protease adaptor ClpS, hindering proteolysis of ClpS-dependent substrates of ClpAP, such as Oat, a promoter of antibiotic persistence. HspQ is acetylated by the protein acetyltransferase Pat from acetyl coenzyme A (acetyl-CoA) bound to the acetyl-CoA binding protein Qad. We now report that low cytoplasmic Mg promotes expression, which protects substrates of Lon and ClpSAP by increasing HspQ amounts. The promoter is activated by PhoP, a regulatory protein highly activated in low cytoplasmic Mg that also represses transcription. Both the gene and PhoP repression of the promoter are necessary for antibiotic persistence. PhoP also promotes transcription in Escherichia coli, which shares a similar PhoP box in the promoter region with Typhimurium, Salmonella bongori, and Enterobacter cloacae. Our findings identify cytoplasmic Mg and the PhoP protein as critical regulators of protease specificity in multiple enteric bacteria. The bacterium Salmonella enterica serovar Typhimurium narrows down the spectrum of substrates degraded by the proteases Lon and ClpAP in response to low cytoplasmic Mg, a condition that decreases protein synthesis. This control is exerted by PhoP, a transcriptional regulator activated in low cytoplasmic Mg that governs proteostasis and is conserved in enteric bacteria. The uncovered mechanism enables bacteria to control the abundance of preexisting proteins.

摘要

蛋白水解作用是所有活细胞的基本特性。在沙门氏菌伤寒血清型 Typhimurium 中,HspQ 蛋白控制 Lon 和 ClpAP 蛋白酶的特异性。HspQ 乙酰化后,不再作为 Lon 的底物,也不再增强 Lon 底物 Hha 的蛋白水解作用。积累的 HspQ 蛋白与蛋白酶衔接子 ClpS 结合,阻碍 ClpAP 的 ClpS 依赖性底物,如 Oat 的蛋白水解作用,Oat 是抗生素持续存在的启动子。HspQ 由与乙酰辅酶 A 结合蛋白 Qad 结合的乙酰辅酶 A (acetyl-CoA) 上的蛋白乙酰转移酶 Pat 乙酰化。我们现在报告低细胞质 Mg 促进 表达,通过增加 HspQ 量来保护 Lon 和 ClpSAP 的底物。PhoP 激活 启动子,PhoP 是一种在低细胞质 Mg 中高度激活的调节蛋白,也抑制 转录。PhoP 对 基因和 启动子的抑制都是抗生素持续存在所必需的。PhoP 还在大肠杆菌中促进 转录,大肠杆菌在 启动子区域与 Typhimurium、Bongori 沙门氏菌和 Cloacae 肠杆菌共享一个类似的 PhoP 盒。我们的发现确定细胞质 Mg 和 PhoP 蛋白是多种肠杆菌蛋白酶特异性的关键调节剂。沙门氏菌伤寒血清型 Typhimurium 在低细胞质 Mg 条件下(降低蛋白质合成),缩小了 Lon 和 ClpAP 蛋白酶降解的底物谱。这种控制是由 PhoP 介导的,PhoP 是一种在低细胞质 Mg 中激活的转录调节剂,控制蛋白质平衡并在肠杆菌中保守。所揭示的机制使细菌能够控制现有蛋白质的丰度。

相似文献

1
Low Cytoplasmic Magnesium Increases the Specificity of the Lon and ClpAP Proteases.
J Bacteriol. 2021 Jun 22;203(14):e0014321. doi: 10.1128/JB.00143-21.
2
Activator of one protease transforms into inhibitor of another in response to nutritional signals.
Genes Dev. 2019 Sep 1;33(17-18):1280-1292. doi: 10.1101/gad.325241.119. Epub 2019 Aug 1.
3
HspQ Functions as a Unique Specificity-Enhancing Factor for the AAA+ Lon Protease.
Mol Cell. 2017 Jun 1;66(5):672-683.e4. doi: 10.1016/j.molcel.2017.05.016.
4
Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate.
Mol Cell. 2017 Apr 20;66(2):234-246.e5. doi: 10.1016/j.molcel.2017.03.009.
5
Reduction in adaptor amounts establishes degradation hierarchy among protease substrates.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4483-E4492. doi: 10.1073/pnas.1722246115. Epub 2018 Apr 23.
6
Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Typhimurium.
J Microbiol Biotechnol. 2023 Sep 28;33(9):1130-1140. doi: 10.4014/jmb.2306.06016. Epub 2023 Jun 17.
8
expresses foreign genes during infection by degrading their silencer.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8074-8082. doi: 10.1073/pnas.1912808117. Epub 2020 Mar 24.
9
10
Programmed Delay of a Virulence Circuit Promotes Pathogenicity.
mBio. 2019 Apr 9;10(2):e00291-19. doi: 10.1128/mBio.00291-19.

引用本文的文献

1
An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system.
Front Cell Infect Microbiol. 2025 Jan 31;15:1509037. doi: 10.3389/fcimb.2025.1509037. eCollection 2025.
2
How Bacterial Pathogens Coordinate Appetite with Virulence.
Microbiol Mol Biol Rev. 2023 Sep 26;87(3):e0019822. doi: 10.1128/mmbr.00198-22. Epub 2023 Jun 26.
3
Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria.
J Microbiol. 2023 Mar;61(3):331-341. doi: 10.1007/s12275-023-00024-w. Epub 2023 Feb 17.
4
Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom.
Transcription. 2021 Aug;12(4):182-218. doi: 10.1080/21541264.2021.1973865. Epub 2021 Sep 9.
5
How the PhoP/PhoQ System Controls Virulence and Mg Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution.
Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0017620. doi: 10.1128/MMBR.00176-20. Epub 2021 Jun 30.

本文引用的文献

2
Degradation of Lon in Caulobacter crescentus.
J Bacteriol. 2020 Dec 7;203(1). doi: 10.1128/JB.00344-20.
3
Small proteins regulate survival inside macrophages by controlling degradation of a magnesium transporter.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20235-20243. doi: 10.1073/pnas.2006116117. Epub 2020 Aug 4.
4
expresses foreign genes during infection by degrading their silencer.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8074-8082. doi: 10.1073/pnas.1912808117. Epub 2020 Mar 24.
6
The expanded specificity and physiological role of a widespread N-degron recognin.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18629-18637. doi: 10.1073/pnas.1821060116. Epub 2019 Aug 26.
7
Activator of one protease transforms into inhibitor of another in response to nutritional signals.
Genes Dev. 2019 Sep 1;33(17-18):1280-1292. doi: 10.1101/gad.325241.119. Epub 2019 Aug 1.
8
Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions.
Front Microbiol. 2019 Jul 12;10:1604. doi: 10.3389/fmicb.2019.01604. eCollection 2019.
9
Protein Acetylation in Bacteria.
Annu Rev Microbiol. 2019 Sep 8;73:111-132. doi: 10.1146/annurev-micro-020518-115526. Epub 2019 May 15.
10
Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes.
mBio. 2019 Apr 9;10(2):e02708-18. doi: 10.1128/mBio.02708-18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验