Suppr超能文献

评估深度学习工具在提高放射科医生和急诊医生对手部和足部 X 光片骨折检测能力的潜力。

Assessing the Potential of a Deep Learning Tool to Improve Fracture Detection by Radiologists and Emergency Physicians on Extremity Radiographs.

机构信息

University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA (T.F., V.V., V.K., R.B., L.K.B., N.F.).

University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA (T.F., V.V., V.K., R.B., L.K.B., N.F.).

出版信息

Acad Radiol. 2024 May;31(5):1989-1999. doi: 10.1016/j.acra.2023.10.042. Epub 2023 Nov 22.

Abstract

RATIONALE AND OBJECTIVES

To evaluate the standalone performance of a deep learning (DL) based fracture detection tool on extremity radiographs and assess the performance of radiologists and emergency physicians in identifying fractures of the extremities with and without the DL aid.

MATERIALS AND METHODS

The DL tool was previously developed using 132,000 appendicular skeletal radiographs divided into 87% training, 11% validation, and 2% test sets. Stand-alone performance was evaluated on 2626 de-identified radiographs from a single institution in Ohio, including at least 140 exams per body region. Consensus from three US board-certified musculoskeletal (MSK) radiologists served as ground truth. A multi-reader retrospective study was performed in which 24 readers (eight each of emergency physicians, non-MSK radiologists, and MSK radiologists) identified fractures in 186 cases during two independent sessions with and without DL aid, separated by a one-month washout period. The accuracy (area under the receiver operating curve), sensitivity, specificity, and reading time were compared with and without model aid.

RESULTS

The model achieved a stand-alone accuracy of 0.986, sensitivity of 0.987, and specificity of 0.885, and high accuracy (> 0.95) across stratification for body part, age, gender, radiographic views, and scanner type. With DL aid, reader accuracy increased by 0.047 (95% CI: 0.034, 0.061; p = 0.004) and sensitivity significantly improved from 0.865 (95% CI: 0.848, 0.881) to 0.955 (95% CI: 0.944, 0.964). Average reading time was shortened by 7.1 s (27%) per exam. When stratified by physician type, this improvement was greater for emergency physicians and non-MSK radiologists.

CONCLUSION

The DL tool demonstrated high stand-alone accuracy, aided physician diagnostic accuracy, and decreased interpretation time.

摘要

背景和目的

评估一种基于深度学习(DL)的骨折检测工具在四肢 X 光片上的独立性能,并评估放射科医生和急诊医生在有和没有 DL 辅助的情况下识别四肢骨折的能力。

材料和方法

该 DL 工具是使用 132000 张四肢骨骼 X 光片开发的,分为 87%的训练集、11%的验证集和 2%的测试集。在俄亥俄州的一家单机构中,对 2626 张去标识的 X 光片进行了独立性能评估,每个身体区域至少包括 140 个检查。由三位美国认证的肌肉骨骼(MSK)放射科医生组成的共识作为金标准。进行了一项多读者回顾性研究,其中 24 名读者(每位急诊医生、非 MSK 放射科医生和 MSK 放射科医生各 8 名)在两次独立的检查中使用和不使用 DL 辅助识别 186 例骨折,两次检查之间间隔一个月的洗脱期。比较有无模型辅助时的准确性(接受者操作特征曲线下面积)、敏感性、特异性和阅读时间。

结果

该模型的独立准确性为 0.986,敏感性为 0.987,特异性为 0.885,在身体部位、年龄、性别、放射视图和扫描仪类型的分层中均具有较高的准确性(>0.95)。使用 DL 辅助,读者的准确性提高了 0.047(95%CI:0.034,0.061;p=0.004),敏感性从 0.865(95%CI:0.848,0.881)显著提高到 0.955(95%CI:0.944,0.964)。平均阅读时间每检查缩短了 7.1 秒(27%)。按医生类型分层时,急诊医生和非 MSK 放射科医生的改善更大。

结论

该 DL 工具具有较高的独立准确性,辅助医生的诊断准确性,并缩短了解释时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验