Suppr超能文献

结合 X 射线、中子和电子,以及 NMR,实现结构-功能研究的精确和准确。

Combining X-rays, neutrons and electrons, and NMR, for precision and accuracy in structure-function studies.

机构信息

Department of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom.

出版信息

Acta Crystallogr A Found Adv. 2021 May 1;77(Pt 3):173-185. doi: 10.1107/S205327332100317X. Epub 2021 May 4.

Abstract

The distinctive features of the physics-based probes used in understanding the structure of matter focusing on biological sciences, but not exclusively, are described in the modern context. This is set in a wider scope of holistic biology and the scepticism about reductionism', what is called the molecular level', and how to respond constructively. These topics will be set alongside the principles of accuracy and precision, and their boundaries. The combination of probes and their application together is the usual way of realizing accuracy. The distinction between precision and accuracy can be blurred by the predictive force of a precise structure, thereby lending confidence in its potential accuracy. These descriptions will be applied to the comparison of cryo and room-temperature protein crystal structures as well as the solid state of a crystal and the same molecules studied by small-angle X-ray scattering in solution and by electron microscopy on a sample grid. Examples will include: time-resolved X-ray Laue crystallography of an enzyme Michaelis complex formed directly in a crystal equivalent to in vivo; a new iodoplatin for radiation therapy predicted from studies of platin crystal structures; and the field of colouration of carotenoids, as an effective assay of function, i.e. their colouration, when unbound and bound to a protein. The complementarity of probes, as well as their combinatory use, is then at the foundation of real (biologically relevant), probe-artefacts-free, structure-function studies. The foundations of our methodologies are being transformed by colossal improvements in technologies of X-ray and neutron sources and their beamline instruments, as well as improved electron microscopes and NMR spectrometers. The success of protein structure prediction from gene sequence recently reported by CASP14 also opens new doors to change and extend the foundations of the structural sciences.

摘要

本文描述了用于理解物质结构的基于物理的探针的独特特征,重点关注但不仅限于生物科学。这是在更广泛的整体生物学背景下进行的,并对“还原论”、所谓的“分子水平”以及如何建设性地回应持怀疑态度。这些主题将与准确性和精密度的原则及其边界一起讨论。探针及其应用的结合通常是实现准确性的常用方法。准确性和精密度之间的区别可能会因精确结构的预测力而变得模糊,从而对其潜在准确性产生信心。这些描述将应用于比较低温和室温下的蛋白质晶体结构,以及晶体的固态,以及通过小角 X 射线散射在溶液中以及通过电子显微镜在样品网格上研究相同的分子。示例包括:在晶体中直接形成的酶迈克尔逊复合物的时间分辨 X 射线劳埃晶体学,相当于体内;从铂晶体结构研究中预测的用于放射治疗的新型碘铂;以及类胡萝卜素的着色领域,作为一种有效的功能测定,即在与蛋白质结合和未结合时的着色。探针的互补性及其组合使用是进行真实(具有生物学相关性)、无探针伪影的结构功能研究的基础。X 射线和中子源及其光束线仪器技术的巨大改进以及改进的电子显微镜和 NMR 光谱仪正在改变我们方法的基础。最近由 CASP14 报道的从基因序列预测蛋白质结构的成功也为改变和扩展结构科学的基础开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc74/8127390/39229691abe0/a-77-00173-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验