Suppr超能文献

智能手表在运动障碍中的传感器验证和诊断潜力。

Sensor Validation and Diagnostic Potential of Smartwatches in Movement Disorders.

机构信息

Institute of Medical Informatics, University of Münster, 48149 Münster, Germany.

Institute of Geophysics, University of Münster, 48149 Münster, Germany.

出版信息

Sensors (Basel). 2021 Apr 30;21(9):3139. doi: 10.3390/s21093139.

Abstract

Smartwatches provide technology-based assessments in Parkinson's Disease (PD). It is necessary to evaluate their reliability and accuracy in order to include those devices in an assessment. We present unique results for sensor validation and disease classification via machine learning (ML). A comparison setup was designed with two different series of Apple smartwatches, one Nanometrics seismometer and a high-precision shaker to measure tremor-like amplitudes and frequencies. Clinical smartwatch measurements were acquired from a prospective study including 450 participants with PD, differential diagnoses (DD) and healthy participants. All participants wore two smartwatches throughout a 15-min examination. Symptoms and medical history were captured on the paired smartphone. The amplitude error of both smartwatches reaches up to 0.005 g, and for the measured frequencies, up to 0.01 Hz. A broad range of different ML classifiers were cross-validated. The most advanced task of distinguishing PD vs. DD was evaluated with 74.1% balanced accuracy, 86.5% precision and 90.5% recall by Multilayer Perceptrons. Deep-learning architectures significantly underperformed in all classification tasks. Smartwatches are capable of capturing subtle tremor signs with low noise. Amplitude and frequency differences between smartwatches and the seismometer were under the level of clinical significance. This study provided the largest PD sample size of two-hand smartwatch measurements and our preliminary ML-evaluation shows that such a system provides powerful means for diagnosis classification and new digital biomarkers, but it remains challenging for distinguishing similar disorders.

摘要

智能手表为帕金森病(PD)提供了基于技术的评估。为了将这些设备纳入评估,有必要评估其可靠性和准确性。我们通过机器学习(ML)为传感器验证和疾病分类提供了独特的结果。设计了一个比较设置,其中包括两个不同系列的苹果智能手表、一个 Nanometrics 地震计和一个高精度振动器,用于测量类似震颤的幅度和频率。通过一项包括 450 名 PD 患者、鉴别诊断(DD)和健康参与者的前瞻性研究获得了临床智能手表测量值。所有参与者在 15 分钟的检查过程中佩戴了两个智能手表。症状和病史通过配对的智能手机捕获。两个智能手表的幅度误差高达 0.005g,测量频率的误差高达 0.01Hz。交叉验证了广泛的不同 ML 分类器。使用多层感知机评估了区分 PD 与 DD 的最先进任务,平衡准确率为 74.1%,精度为 86.5%,召回率为 90.5%。深度学习架构在所有分类任务中的表现都明显较差。智能手表能够捕捉到低噪声的细微震颤迹象。智能手表和地震计之间的幅度和频率差异低于临床意义水平。这项研究提供了最大的双手智能手表测量 PD 样本量,我们的初步 ML 评估表明,这样的系统为诊断分类和新的数字生物标志物提供了强大的手段,但对于区分类似疾病仍然具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3717/8124167/2e53ab0c5a08/sensors-21-03139-g001.jpg

相似文献

1
Sensor Validation and Diagnostic Potential of Smartwatches in Movement Disorders.
Sensors (Basel). 2021 Apr 30;21(9):3139. doi: 10.3390/s21093139.
2
Machine Learning in the Parkinson's disease smartwatch (PADS) dataset.
NPJ Parkinsons Dis. 2024 Jan 5;10(1):9. doi: 10.1038/s41531-023-00625-7.
4
Smartwatch for the analysis of rest tremor in patients with Parkinson's disease.
J Neurol Sci. 2019 Jun 15;401:37-42. doi: 10.1016/j.jns.2019.04.011. Epub 2019 Apr 9.
6
Essential tremor quantification based on the combined use of a smartphone and a smartwatch: The NetMD study.
J Neurosci Methods. 2018 Jun 1;303:95-102. doi: 10.1016/j.jneumeth.2018.02.015. Epub 2018 Feb 23.
7
8
Are smartphones and machine learning enough to diagnose tremor?
J Neurol. 2022 Nov;269(11):6104-6115. doi: 10.1007/s00415-022-11293-7. Epub 2022 Jul 21.
9
Utilizing a Non-Motor Symptoms Questionnaire and Machine Learning to Differentiate Movement Disorders.
Stud Health Technol Inform. 2022 May 25;294:104-108. doi: 10.3233/SHTI220405.

引用本文的文献

1
Applications of flexible materials in health management assisted by machine learning.
RSC Adv. 2025 Jun 30;15(28):22386-22410. doi: 10.1039/d5ra02594j.
2
Movement Disorders and Smart Wrist Devices: A Comprehensive Study.
Sensors (Basel). 2025 Jan 5;25(1):266. doi: 10.3390/s25010266.
3
Machine learning and wearable sensors for automated Parkinson's disease diagnosis aid: a systematic review.
J Neurol. 2024 Oct;271(10):6452-6470. doi: 10.1007/s00415-024-12611-x. Epub 2024 Aug 14.
4
Smartwatch Versus Routine Tremor Documentation: Descriptive Comparison.
JMIR Form Res. 2024 Mar 20;8:e51249. doi: 10.2196/51249.
5
Upper limb intention tremor assessment: opportunities and challenges in wearable technology.
J Neuroeng Rehabil. 2024 Jan 13;21(1):8. doi: 10.1186/s12984-023-01302-9.
6
Machine Learning in the Parkinson's disease smartwatch (PADS) dataset.
NPJ Parkinsons Dis. 2024 Jan 5;10(1):9. doi: 10.1038/s41531-023-00625-7.
7
Monipar: movement data collection tool to monitor motor symptoms in Parkinson's disease using smartwatches and smartphones.
Front Neurol. 2023 Dec 7;14:1326640. doi: 10.3389/fneur.2023.1326640. eCollection 2023.
8
Smartwatches in healthcare medicine: assistance and monitoring; a scoping review.
BMC Med Inform Decis Mak. 2023 Nov 3;23(1):248. doi: 10.1186/s12911-023-02350-w.
10
"suMus," a novel digital system for arm movement metrics and muscle energy expenditure.
Front Physiol. 2023 Jan 26;14:1057592. doi: 10.3389/fphys.2023.1057592. eCollection 2023.

本文引用的文献

1
Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: Performance vs. interpretability issues.
Artif Intell Med. 2021 Jan;111:101984. doi: 10.1016/j.artmed.2020.101984. Epub 2020 Nov 10.
2
Artificial Intelligence in Medicine: Chances and Challenges for Wide Clinical Adoption.
Visc Med. 2020 Dec;36(6):443-449. doi: 10.1159/000511930. Epub 2020 Oct 12.
4
5
[Wearables in the treatment of neurological diseases-where do we stand today?].
Nervenarzt. 2019 Aug;90(8):787-795. doi: 10.1007/s00115-019-0753-z.
6
Prodromal Parkinson disease: do we miss the signs?
Nat Rev Neurol. 2019 Aug;15(8):437-438. doi: 10.1038/s41582-019-0215-z.
7
A Smart Device System to Identify New Phenotypical Characteristics in Movement Disorders.
Front Neurol. 2019 Jan 30;10:48. doi: 10.3389/fneur.2019.00048. eCollection 2019.
8
The burden of Parkinson's disease: a worldwide perspective.
Lancet Neurol. 2018 Nov;17(11):928-929. doi: 10.1016/S1474-4422(18)30355-7. Epub 2018 Oct 1.
9
A Novel Posture for Better Differentiation Between Parkinson's Tremor and Essential Tremor.
Front Neurosci. 2018 May 17;12:317. doi: 10.3389/fnins.2018.00317. eCollection 2018.
10
Feasibility of large-scale deployment of multiple wearable sensors in Parkinson's disease.
PLoS One. 2017 Dec 20;12(12):e0189161. doi: 10.1371/journal.pone.0189161. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验