Suppr超能文献

基于 DNA 甲基化标志物的系统评估构建透明细胞肾细胞癌预后风险模型

Development of a prognostic risk model for clear cell renal cell carcinoma by systematic evaluation of DNA methylation markers.

机构信息

Department of Pathology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.

Department of Medical Oncology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.

出版信息

Clin Epigenetics. 2021 May 4;13(1):103. doi: 10.1186/s13148-021-01084-8.

Abstract

BACKGROUND

Current risk models for renal cell carcinoma (RCC) based on clinicopathological factors are sub-optimal in accurately identifying high-risk patients. Here, we perform a head-to-head comparison of previously published DNA methylation markers and propose a potential prognostic model for clear cell RCC (ccRCC).

PATIENTS AND METHODS

Promoter methylation of PCDH8, BNC1, SCUBE3, GREM1, LAD1, NEFH, RASSF1A, GATA5, SFRP1, CDO1, and NEURL was determined by nested methylation-specific PCR. To identify clinically relevant methylated regions, The Cancer Genome Atlas (TCGA) was used to guide primer design. Formalin-fixed paraffin-embedded (FFPE) tissue samples from 336 non-metastatic ccRCC patients from the prospective Netherlands Cohort Study (NLCS) were used to develop a Cox proportional hazards model using stepwise backward elimination and bootstrapping to correct for optimism. For validation purposes, FFPE ccRCC tissue of 64 patients from the University Hospitals Leuven and a series of 232 cases from The Cancer Genome Atlas (TCGA) were used.

RESULTS

Methylation of GREM1, GATA5, LAD1, NEFH, NEURL, and SFRP1 was associated with poor ccRCC-specific survival, independent of age, sex, tumor size, TNM stage or tumor grade. Moreover, the association between GREM1, NEFH, and NEURL methylation and outcome was shown to be dependent on the genomic region. A prognostic biomarker model containing GREM1, GATA5, LAD1, NEFH and NEURL methylation in combination with clinicopathological characteristics, performed better compared to the model with clinicopathological characteristics only (clinical model), in both the NLCS and the validation population with a c-statistic of 0.71 versus 0.65 and a c-statistic of 0.95 versus 0.86 consecutively. However, the biomarker model had limited added prognostic value in the TCGA series with a c-statistic of 0.76 versus 0.75 for the clinical model.

CONCLUSION

In this study we performed a head-to-head comparison of potential prognostic methylation markers for ccRCC using a novel approach to guide primers design which utilizes the optimal location for measuring DNA methylation. Using this approach, we identified five methylation markers that potentially show prognostic value in addition to currently known clinicopathological factors.

摘要

背景

目前基于临床病理因素的肾细胞癌(RCC)风险模型在准确识别高危患者方面并不理想。在这里,我们对头对头比较了先前发表的 DNA 甲基化标记物,并提出了一个用于透明细胞 RCC(ccRCC)的潜在预后模型。

患者和方法

通过巢式甲基化特异性 PCR 确定 PCDH8、BNC1、SCUBE3、GREM1、LAD1、NEFH、RASSF1A、GATA5、SFRP1、CDO1 和 NEURL 的启动子甲基化。为了确定具有临床相关性的甲基化区域,我们使用癌症基因组图谱(TCGA)来指导引物设计。使用来自前瞻性荷兰队列研究(NLCS)的 336 名非转移性 ccRCC 患者的福尔马林固定石蜡包埋(FFPE)组织样本,使用逐步向后消除和引导bootstrap 来构建 Cox 比例风险模型,以纠正乐观性。为了验证目的,使用来自鲁汶大学医院的 64 名 FFPE ccRCC 组织和 TCGA 中的一系列 232 例进行验证。

结果

GREM1、GATA5、LAD1、NEFH、NEURL 和 SFRP1 的甲基化与 ccRCC 特异性生存不良相关,独立于年龄、性别、肿瘤大小、TNM 分期或肿瘤分级。此外,GREM1、NEFH 和 NEURL 甲基化与结局之间的关联被证明取决于基因组区域。与仅包含临床病理特征的模型相比,包含 GREM1、GATA5、LAD1、NEFH 和 NEURL 甲基化以及临床病理特征的预后生物标志物模型在 NLCS 和验证人群中的表现更好,其 C 统计量分别为 0.71 和 0.65,C 统计量分别为 0.95 和 0.86。然而,该生物标志物模型在 TCGA 系列中的预后价值有限,其 C 统计量为 0.76,临床模型为 0.75。

结论

在这项研究中,我们使用一种新方法对头对头比较了用于 ccRCC 的潜在预后甲基化标记物,该方法利用了测量 DNA 甲基化的最佳位置来指导引物设计。使用这种方法,我们确定了五个甲基化标记物,除了目前已知的临床病理因素外,这些标记物可能具有预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3124/8094610/802488b2a8b2/13148_2021_1084_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验